Spaces:
Running
on
Zero
Running
on
Zero
rizavelioglu
commited on
Commit
·
46241ec
1
Parent(s):
8b4895b
add support for remote VAE-decoding
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import AutoencoderKL
|
|
|
4 |
import torchvision.transforms.v2 as transforms
|
5 |
from torchvision.io import read_image
|
6 |
from typing import Dict
|
@@ -38,64 +39,99 @@ class VAETester:
|
|
38 |
transforms.ToDtype(torch.float32, scale=True),
|
39 |
])
|
40 |
self.output_transform = transforms.Normalize(mean=[-1], std=[2])
|
41 |
-
|
42 |
-
# Load all VAE models at initialization
|
43 |
self.vae_models = self._load_all_vaes()
|
44 |
|
45 |
-
def
|
46 |
-
"""
|
47 |
-
|
48 |
-
"
|
49 |
-
"
|
50 |
-
"
|
51 |
-
"stable-diffusion-3-medium": ("stabilityai/stable-diffusion-3-medium-diffusers", "vae"),
|
52 |
-
"FLUX.1-dev": ("black-forest-labs/FLUX.1-dev", "vae")
|
53 |
}
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
img_transformed = self.input_transform(img).to(self.device).unsqueeze(0)
|
66 |
original_base = self.base_transform(img).cpu()
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
decoded_transformed = self.output_transform(decoded.squeeze(0)).cpu()
|
73 |
reconstructed = decoded_transformed.clip(0, 1)
|
74 |
-
|
75 |
diff = (original_base - reconstructed).abs()
|
76 |
bw_diff = (diff > tolerance).any(dim=0).float()
|
77 |
-
|
78 |
diff_image = transforms.ToPILImage()(bw_diff)
|
79 |
recon_image = transforms.ToPILImage()(reconstructed)
|
80 |
diff_score = bw_diff.sum().item()
|
81 |
-
|
82 |
return diff_image, recon_image, diff_score
|
83 |
|
84 |
-
def process_all_models(self,
|
85 |
-
|
86 |
-
tolerance: float):
|
87 |
-
"""Process image through all loaded VAEs"""
|
88 |
results = {}
|
89 |
-
for name,
|
90 |
-
diff_img, recon_img, score = self.process_image(img,
|
91 |
results[name] = (diff_img, recon_img, score)
|
92 |
return results
|
93 |
|
94 |
-
|
95 |
-
@spaces.GPU(duration=10)
|
96 |
def test_all_vaes(image_path: str, tolerance: float, img_size: int):
|
97 |
"""Gradio interface function to test all VAEs"""
|
98 |
-
# Initialize tester
|
99 |
tester = VAETester(img_size=img_size)
|
100 |
try:
|
101 |
img_tensor = read_image(image_path)
|
@@ -112,25 +148,23 @@ def test_all_vaes(image_path: str, tolerance: float, img_size: int):
|
|
112 |
scores.append(f"{name:<25}: {score:,.0f}")
|
113 |
|
114 |
return diff_images, recon_images, "\n".join(scores)
|
115 |
-
|
116 |
except Exception as e:
|
117 |
error_msg = f"Error: {str(e)}"
|
118 |
return [None], [None], error_msg
|
119 |
|
120 |
examples = [f"examples/{img_filename}" for img_filename in sorted(os.listdir("examples/"))]
|
121 |
|
122 |
-
# Gradio interface
|
123 |
with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family: 'Courier New', Courier, monospace;}") as demo:
|
124 |
gr.Markdown("# VAE Comparison Tool")
|
125 |
gr.Markdown("""
|
126 |
-
Upload an image or select an example to compare how different VAEs reconstruct it.
|
127 |
-
1. The image is padded to a square and resized to
|
128 |
-
2. Each VAE encodes the image into a latent space and decodes it back.
|
129 |
-
3.
|
130 |
-
- **Difference Maps**:
|
131 |
-
- **Reconstructed Images**:
|
132 |
-
- **Sum of Differences**:
|
133 |
-
|
134 |
""")
|
135 |
|
136 |
with gr.Row():
|
@@ -142,27 +176,20 @@ with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family
|
|
142 |
value=0.1,
|
143 |
step=0.01,
|
144 |
label="Difference Tolerance",
|
145 |
-
info="Low
|
146 |
-
)
|
147 |
-
img_size = gr.Dropdown(
|
148 |
-
label="Image Size",
|
149 |
-
choices=[512, 1024],
|
150 |
)
|
|
|
151 |
submit_btn = gr.Button("Test All VAEs")
|
152 |
|
153 |
with gr.Column(scale=3):
|
154 |
with gr.Row():
|
155 |
diff_gallery = gr.Gallery(label="Difference Maps", columns=4, height=512)
|
156 |
recon_gallery = gr.Gallery(label="Reconstructed Images", columns=4, height=512)
|
157 |
-
scores_output = gr.Textbox(label="Sum of
|
158 |
|
159 |
if examples:
|
160 |
with gr.Row():
|
161 |
-
|
162 |
-
examples=examples,
|
163 |
-
inputs=image_input,
|
164 |
-
label="Example Images"
|
165 |
-
)
|
166 |
|
167 |
submit_btn.click(
|
168 |
fn=test_all_vaes,
|
@@ -172,4 +199,3 @@ with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family
|
|
172 |
|
173 |
if __name__ == "__main__":
|
174 |
demo.launch()
|
175 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import AutoencoderKL
|
4 |
+
from diffusers.utils.remote_utils import remote_decode
|
5 |
import torchvision.transforms.v2 as transforms
|
6 |
from torchvision.io import read_image
|
7 |
from typing import Dict
|
|
|
39 |
transforms.ToDtype(torch.float32, scale=True),
|
40 |
])
|
41 |
self.output_transform = transforms.Normalize(mean=[-1], std=[2])
|
|
|
|
|
42 |
self.vae_models = self._load_all_vaes()
|
43 |
|
44 |
+
def _get_endpoint(self, base_name: str) -> str:
|
45 |
+
"""Helper method to get the endpoint for a given base model name"""
|
46 |
+
endpoints = {
|
47 |
+
"sd-vae-ft-mse": "https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud",
|
48 |
+
"sdxl-vae": "https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud",
|
49 |
+
"FLUX.1-schnell": "https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud",
|
|
|
|
|
50 |
}
|
51 |
+
return endpoints[base_name]
|
52 |
+
|
53 |
+
def _load_all_vaes(self) -> Dict[str, Dict]:
|
54 |
+
"""Load configurations for local and remote VAE models"""
|
55 |
+
local_vaes = {
|
56 |
+
"stable-diffusion-v1-4": AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to(self.device),
|
57 |
+
"sd-vae-ft-mse": AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(self.device),
|
58 |
+
"sdxl-vae": AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to(self.device),
|
59 |
+
"stable-diffusion-3-medium": AutoencoderKL.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", subfolder="vae").to(self.device),
|
60 |
+
"FLUX.1-schnell": AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae").to(self.device),
|
61 |
+
"FLUX.1-dev": AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae").to(self.device),
|
62 |
+
}
|
63 |
+
# Define the desired order of models
|
64 |
+
order = [
|
65 |
+
"stable-diffusion-v1-4",
|
66 |
+
"sd-vae-ft-mse",
|
67 |
+
"sd-vae-ft-mse (remote)",
|
68 |
+
"sdxl-vae",
|
69 |
+
"sdxl-vae (remote)",
|
70 |
+
"stable-diffusion-3-medium",
|
71 |
+
"FLUX.1-schnell",
|
72 |
+
"FLUX.1-schnell (remote)",
|
73 |
+
"FLUX.1-dev",
|
74 |
+
]
|
75 |
+
|
76 |
+
# Construct the vae_models dictionary in the specified order
|
77 |
+
vae_models = {}
|
78 |
+
for name in order:
|
79 |
+
if "(remote)" not in name:
|
80 |
+
# Local model
|
81 |
+
vae_models[name] = {"type": "local", "vae": local_vaes[name]}
|
82 |
+
else:
|
83 |
+
# Remote model
|
84 |
+
base_name = name.replace(" (remote)", "")
|
85 |
+
vae_models[name] = {
|
86 |
+
"type": "remote",
|
87 |
+
"local_vae_key": base_name,
|
88 |
+
"endpoint": self._get_endpoint(base_name),
|
89 |
+
}
|
90 |
+
|
91 |
+
return vae_models
|
92 |
+
|
93 |
+
def process_image(self, img: torch.Tensor, model_config: Dict, tolerance: float):
|
94 |
+
"""Process image through a single VAE (local or remote)"""
|
95 |
img_transformed = self.input_transform(img).to(self.device).unsqueeze(0)
|
96 |
original_base = self.base_transform(img).cpu()
|
97 |
|
98 |
+
if model_config["type"] == "local":
|
99 |
+
vae = model_config["vae"]
|
100 |
+
with torch.no_grad():
|
101 |
+
encoded = vae.encode(img_transformed).latent_dist.sample()
|
102 |
+
decoded = vae.decode(encoded).sample
|
103 |
+
elif model_config["type"] == "remote":
|
104 |
+
local_vae = self.vae_models[model_config["local_vae_key"]]["vae"]
|
105 |
+
with torch.no_grad():
|
106 |
+
encoded = local_vae.encode(img_transformed).latent_dist.sample()
|
107 |
+
decoded = remote_decode(
|
108 |
+
endpoint=model_config["endpoint"],
|
109 |
+
tensor=encoded,
|
110 |
+
do_scaling=False,
|
111 |
+
output_type="pt",
|
112 |
+
return_type="pt",
|
113 |
+
partial_postprocess=False,
|
114 |
+
)
|
115 |
decoded_transformed = self.output_transform(decoded.squeeze(0)).cpu()
|
116 |
reconstructed = decoded_transformed.clip(0, 1)
|
|
|
117 |
diff = (original_base - reconstructed).abs()
|
118 |
bw_diff = (diff > tolerance).any(dim=0).float()
|
|
|
119 |
diff_image = transforms.ToPILImage()(bw_diff)
|
120 |
recon_image = transforms.ToPILImage()(reconstructed)
|
121 |
diff_score = bw_diff.sum().item()
|
|
|
122 |
return diff_image, recon_image, diff_score
|
123 |
|
124 |
+
def process_all_models(self, img: torch.Tensor, tolerance: float):
|
125 |
+
"""Process image through all configured VAEs"""
|
|
|
|
|
126 |
results = {}
|
127 |
+
for name, model_config in self.vae_models.items():
|
128 |
+
diff_img, recon_img, score = self.process_image(img, model_config, tolerance)
|
129 |
results[name] = (diff_img, recon_img, score)
|
130 |
return results
|
131 |
|
132 |
+
@spaces.GPU(duration=15)
|
|
|
133 |
def test_all_vaes(image_path: str, tolerance: float, img_size: int):
|
134 |
"""Gradio interface function to test all VAEs"""
|
|
|
135 |
tester = VAETester(img_size=img_size)
|
136 |
try:
|
137 |
img_tensor = read_image(image_path)
|
|
|
148 |
scores.append(f"{name:<25}: {score:,.0f}")
|
149 |
|
150 |
return diff_images, recon_images, "\n".join(scores)
|
|
|
151 |
except Exception as e:
|
152 |
error_msg = f"Error: {str(e)}"
|
153 |
return [None], [None], error_msg
|
154 |
|
155 |
examples = [f"examples/{img_filename}" for img_filename in sorted(os.listdir("examples/"))]
|
156 |
|
|
|
157 |
with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family: 'Courier New', Courier, monospace;}") as demo:
|
158 |
gr.Markdown("# VAE Comparison Tool")
|
159 |
gr.Markdown("""
|
160 |
+
Upload an image or select an example to compare how different VAEs reconstruct it. Now includes remote VAEs via Hugging Face's remote decoding feature!
|
161 |
+
1. The image is padded to a square and resized to the selected size (512 or 1024 pixels).
|
162 |
+
2. Each VAE (local or remote) encodes the image into a latent space and decodes it back.
|
163 |
+
3. Outputs include:
|
164 |
+
- **Difference Maps**: Where reconstruction differs from the original (white = difference > tolerance).
|
165 |
+
- **Reconstructed Images**: Outputs from each VAE.
|
166 |
+
- **Sum of Differences**: Total pixels exceeding tolerance (lower is better).
|
167 |
+
Adjust tolerance to change sensitivity.
|
168 |
""")
|
169 |
|
170 |
with gr.Row():
|
|
|
176 |
value=0.1,
|
177 |
step=0.01,
|
178 |
label="Difference Tolerance",
|
179 |
+
info="Low (0.01): Sensitive to small changes. High (0.5): Only large changes flagged."
|
|
|
|
|
|
|
|
|
180 |
)
|
181 |
+
img_size = gr.Dropdown(label="Image Size", choices=[512, 1024], value=512)
|
182 |
submit_btn = gr.Button("Test All VAEs")
|
183 |
|
184 |
with gr.Column(scale=3):
|
185 |
with gr.Row():
|
186 |
diff_gallery = gr.Gallery(label="Difference Maps", columns=4, height=512)
|
187 |
recon_gallery = gr.Gallery(label="Reconstructed Images", columns=4, height=512)
|
188 |
+
scores_output = gr.Textbox(label="Sum of differences (lower is better)", lines=9, elem_classes="monospace-text")
|
189 |
|
190 |
if examples:
|
191 |
with gr.Row():
|
192 |
+
gr.Examples(examples=examples, inputs=image_input, label="Example Images")
|
|
|
|
|
|
|
|
|
193 |
|
194 |
submit_btn.click(
|
195 |
fn=test_all_vaes,
|
|
|
199 |
|
200 |
if __name__ == "__main__":
|
201 |
demo.launch()
|
|