Spaces:
Running
on
Zero
Running
on
Zero
rizavelioglu
commited on
Commit
·
2a90016
1
Parent(s):
1259fea
add app file
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import AutoencoderKL
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms.v2 as transforms
|
6 |
+
from torchvision.io import read_image
|
7 |
+
from typing import Tuple, Dict, List
|
8 |
+
|
9 |
+
|
10 |
+
class VAETester:
|
11 |
+
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
12 |
+
self.device = device
|
13 |
+
self.input_transform = transforms.Compose([
|
14 |
+
transforms.Pad(padding=[128, 0], padding_mode="edge"),
|
15 |
+
transforms.Resize((512, 512), antialias=True),
|
16 |
+
transforms.ToDtype(torch.float32, scale=True),
|
17 |
+
transforms.Normalize(mean=[0.5], std=[0.5]),
|
18 |
+
])
|
19 |
+
self.base_transform = transforms.Compose([
|
20 |
+
transforms.Pad(padding=[128, 0], padding_mode="edge"),
|
21 |
+
transforms.Resize((512, 512), antialias=True),
|
22 |
+
transforms.ToDtype(torch.float32, scale=True),
|
23 |
+
])
|
24 |
+
self.output_transform = transforms.Normalize(mean=[-1], std=[2])
|
25 |
+
|
26 |
+
# Load all VAE models at initialization
|
27 |
+
self.vae_models = self._load_all_vaes()
|
28 |
+
|
29 |
+
def _load_all_vaes(self) -> Dict[str, AutoencoderKL]:
|
30 |
+
"""Load all available VAE models"""
|
31 |
+
vae_configs = {
|
32 |
+
"Stable Diffusion 3 Medium": ("stabilityai/stable-diffusion-3-medium-diffusers", "vae"),
|
33 |
+
"Stable Diffusion v1-4": ("CompVis/stable-diffusion-v1-4", "vae"),
|
34 |
+
"SD VAE FT-MSE": ("stabilityai/sd-vae-ft-mse", ""),
|
35 |
+
"FLUX.1-dev": ("black-forest-labs/FLUX.1-dev", "vae")
|
36 |
+
}
|
37 |
+
|
38 |
+
vae_dict = {}
|
39 |
+
for name, (path, subfolder) in vae_configs.items():
|
40 |
+
vae_dict[name] = AutoencoderKL.from_pretrained(path, subfolder=subfolder).to(self.device)
|
41 |
+
return vae_dict
|
42 |
+
|
43 |
+
def process_image(self,
|
44 |
+
img: torch.Tensor,
|
45 |
+
vae: AutoencoderKL,
|
46 |
+
tolerance: float) -> Tuple[Image.Image, Image.Image, float]:
|
47 |
+
"""Process image through a single VAE"""
|
48 |
+
img_transformed = self.input_transform(img).to(self.device).unsqueeze(0)
|
49 |
+
original_base = self.base_transform(img).cpu()
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
encoded = vae.encode(img_transformed).latent_dist.sample()
|
53 |
+
encoded_scaled = encoded * vae.config.scaling_factor
|
54 |
+
decoded = vae.decode(encoded_scaled / vae.config.scaling_factor).sample
|
55 |
+
|
56 |
+
decoded_transformed = self.output_transform(decoded.squeeze(0)).cpu()
|
57 |
+
reconstructed = decoded_transformed.clip(0, 1)
|
58 |
+
|
59 |
+
diff = (original_base - reconstructed).abs()
|
60 |
+
bw_diff = (diff > tolerance).any(dim=0).float()
|
61 |
+
|
62 |
+
diff_image = transforms.ToPILImage()(bw_diff)
|
63 |
+
recon_image = transforms.ToPILImage()(reconstructed)
|
64 |
+
diff_score = bw_diff.sum().item()
|
65 |
+
|
66 |
+
return diff_image, recon_image, diff_score
|
67 |
+
|
68 |
+
def process_all_models(self,
|
69 |
+
img: torch.Tensor,
|
70 |
+
tolerance: float) -> Dict[str, Tuple[Image.Image, Image.Image, float]]:
|
71 |
+
"""Process image through all loaded VAEs"""
|
72 |
+
results = {}
|
73 |
+
for name, vae in self.vae_models.items():
|
74 |
+
diff_img, recon_img, score = self.process_image(img, vae, tolerance)
|
75 |
+
results[name] = (diff_img, recon_img, score)
|
76 |
+
return results
|
77 |
+
|
78 |
+
|
79 |
+
# Initialize tester
|
80 |
+
tester = VAETester()
|
81 |
+
|
82 |
+
|
83 |
+
def test_all_vaes(image_path: str, tolerance: float) -> Tuple[List[Image.Image], List[Image.Image], List[str]]:
|
84 |
+
"""Gradio interface function to test all VAEs"""
|
85 |
+
try:
|
86 |
+
img_tensor = read_image(image_path)
|
87 |
+
results = tester.process_all_models(img_tensor, tolerance)
|
88 |
+
|
89 |
+
diff_images = []
|
90 |
+
recon_images = []
|
91 |
+
scores = []
|
92 |
+
|
93 |
+
for name in tester.vae_models.keys():
|
94 |
+
diff_img, recon_img, score = results[name]
|
95 |
+
diff_images.append(diff_img)
|
96 |
+
recon_images.append(recon_img)
|
97 |
+
scores.append(f"{name}: {score:.2f}")
|
98 |
+
|
99 |
+
return diff_images, recon_images, scores
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
error_msg = f"Error: {str(e)}"
|
103 |
+
return [None], [None], [error_msg]
|
104 |
+
|
105 |
+
|
106 |
+
# Gradio interface
|
107 |
+
with gr.Blocks(title="VAE Performance Tester") as demo:
|
108 |
+
gr.Markdown("# VAE Performance Testing Tool")
|
109 |
+
gr.Markdown("Upload an image to compare all VAE models simultaneously")
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column(scale=1):
|
113 |
+
image_input = gr.Image(type="filepath", label="Input Image", height=512)
|
114 |
+
tolerance_slider = gr.Slider(
|
115 |
+
minimum=0.01,
|
116 |
+
maximum=0.5,
|
117 |
+
value=0.1,
|
118 |
+
step=0.01,
|
119 |
+
label="Difference Tolerance"
|
120 |
+
)
|
121 |
+
submit_btn = gr.Button("Test All VAEs")
|
122 |
+
|
123 |
+
with gr.Column(scale=3):
|
124 |
+
with gr.Row():
|
125 |
+
diff_gallery = gr.Gallery(label="Difference Maps", columns=4, height=512)
|
126 |
+
recon_gallery = gr.Gallery(label="Reconstructed Images", columns=4, height=512)
|
127 |
+
scores_output = gr.Textbox(label="Difference Scores", lines=4)
|
128 |
+
|
129 |
+
submit_btn.click(
|
130 |
+
fn=test_all_vaes,
|
131 |
+
inputs=[image_input, tolerance_slider],
|
132 |
+
outputs=[diff_gallery, recon_gallery, scores_output]
|
133 |
+
)
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
demo.launch()
|