Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import AutoencoderKL
|
4 |
-
from PIL import Image
|
5 |
import torchvision.transforms.v2 as transforms
|
6 |
from torchvision.io import read_image
|
7 |
from typing import Tuple, Dict, List
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
class VAETester:
|
11 |
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
@@ -43,7 +47,7 @@ class VAETester:
|
|
43 |
def process_image(self,
|
44 |
img: torch.Tensor,
|
45 |
vae: AutoencoderKL,
|
46 |
-
tolerance: float)
|
47 |
"""Process image through a single VAE"""
|
48 |
img_transformed = self.input_transform(img).to(self.device).unsqueeze(0)
|
49 |
original_base = self.base_transform(img).cpu()
|
@@ -67,7 +71,7 @@ class VAETester:
|
|
67 |
|
68 |
def process_all_models(self,
|
69 |
img: torch.Tensor,
|
70 |
-
tolerance: float)
|
71 |
"""Process image through all loaded VAEs"""
|
72 |
results = {}
|
73 |
for name, vae in self.vae_models.items():
|
@@ -80,7 +84,7 @@ class VAETester:
|
|
80 |
tester = VAETester()
|
81 |
|
82 |
|
83 |
-
def test_all_vaes(image_path: str, tolerance: float)
|
84 |
"""Gradio interface function to test all VAEs"""
|
85 |
try:
|
86 |
img_tensor = read_image(image_path)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import AutoencoderKL
|
|
|
4 |
import torchvision.transforms.v2 as transforms
|
5 |
from torchvision.io import read_image
|
6 |
from typing import Tuple, Dict, List
|
7 |
+
import os
|
8 |
+
from huggingface_hub import login
|
9 |
|
10 |
+
# Get token from environment variable
|
11 |
+
hf_token = os.getenv("HF_TOKEN")
|
12 |
+
login(token=hf_token)
|
13 |
|
14 |
class VAETester:
|
15 |
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
|
|
47 |
def process_image(self,
|
48 |
img: torch.Tensor,
|
49 |
vae: AutoencoderKL,
|
50 |
+
tolerance: float):
|
51 |
"""Process image through a single VAE"""
|
52 |
img_transformed = self.input_transform(img).to(self.device).unsqueeze(0)
|
53 |
original_base = self.base_transform(img).cpu()
|
|
|
71 |
|
72 |
def process_all_models(self,
|
73 |
img: torch.Tensor,
|
74 |
+
tolerance: float):
|
75 |
"""Process image through all loaded VAEs"""
|
76 |
results = {}
|
77 |
for name, vae in self.vae_models.items():
|
|
|
84 |
tester = VAETester()
|
85 |
|
86 |
|
87 |
+
def test_all_vaes(image_path: str, tolerance: float):
|
88 |
"""Gradio interface function to test all VAEs"""
|
89 |
try:
|
90 |
img_tensor = read_image(image_path)
|