rizavelioglu commited on
Commit
0dc0490
·
verified ·
1 Parent(s): 35b23cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -1,11 +1,15 @@
1
  import gradio as gr
2
  import torch
3
  from diffusers import AutoencoderKL
4
- from PIL import Image
5
  import torchvision.transforms.v2 as transforms
6
  from torchvision.io import read_image
7
  from typing import Tuple, Dict, List
 
 
8
 
 
 
 
9
 
10
  class VAETester:
11
  def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
@@ -43,7 +47,7 @@ class VAETester:
43
  def process_image(self,
44
  img: torch.Tensor,
45
  vae: AutoencoderKL,
46
- tolerance: float) -> Tuple[Image.Image, Image.Image, float]:
47
  """Process image through a single VAE"""
48
  img_transformed = self.input_transform(img).to(self.device).unsqueeze(0)
49
  original_base = self.base_transform(img).cpu()
@@ -67,7 +71,7 @@ class VAETester:
67
 
68
  def process_all_models(self,
69
  img: torch.Tensor,
70
- tolerance: float) -> Dict[str, Tuple[Image.Image, Image.Image, float]]:
71
  """Process image through all loaded VAEs"""
72
  results = {}
73
  for name, vae in self.vae_models.items():
@@ -80,7 +84,7 @@ class VAETester:
80
  tester = VAETester()
81
 
82
 
83
- def test_all_vaes(image_path: str, tolerance: float) -> Tuple[List[Image.Image], List[Image.Image], List[str]]:
84
  """Gradio interface function to test all VAEs"""
85
  try:
86
  img_tensor = read_image(image_path)
 
1
  import gradio as gr
2
  import torch
3
  from diffusers import AutoencoderKL
 
4
  import torchvision.transforms.v2 as transforms
5
  from torchvision.io import read_image
6
  from typing import Tuple, Dict, List
7
+ import os
8
+ from huggingface_hub import login
9
 
10
+ # Get token from environment variable
11
+ hf_token = os.getenv("HF_TOKEN")
12
+ login(token=hf_token)
13
 
14
  class VAETester:
15
  def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
 
47
  def process_image(self,
48
  img: torch.Tensor,
49
  vae: AutoencoderKL,
50
+ tolerance: float):
51
  """Process image through a single VAE"""
52
  img_transformed = self.input_transform(img).to(self.device).unsqueeze(0)
53
  original_base = self.base_transform(img).cpu()
 
71
 
72
  def process_all_models(self,
73
  img: torch.Tensor,
74
+ tolerance: float):
75
  """Process image through all loaded VAEs"""
76
  results = {}
77
  for name, vae in self.vae_models.items():
 
84
  tester = VAETester()
85
 
86
 
87
+ def test_all_vaes(image_path: str, tolerance: float):
88
  """Gradio interface function to test all VAEs"""
89
  try:
90
  img_tensor = read_image(image_path)