Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from diffusers import AutoencoderKL | |
import torchvision.transforms.v2 as transforms | |
from torchvision.io import read_image | |
from typing import Dict | |
import os | |
from huggingface_hub import login | |
# Get token from environment variable | |
hf_token = os.getenv("access_token") | |
login(token=hf_token) | |
class PadToSquare: | |
"""Custom transform to pad an image to square dimensions""" | |
def __call__(self, img): | |
_, h, w = img.shape # Get the original dimensions | |
max_side = max(h, w) | |
pad_h = (max_side - h) // 2 | |
pad_w = (max_side - w) // 2 | |
padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h) | |
return transforms.functional.pad(img, padding, padding_mode="edge") | |
class VAETester: | |
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"): | |
self.device = device | |
self.input_transform = transforms.Compose([ | |
PadToSquare(), | |
transforms.Resize((512, 512), antialias=True), | |
transforms.ToDtype(torch.float32, scale=True), | |
transforms.Normalize(mean=[0.5], std=[0.5]), | |
]) | |
self.base_transform = transforms.Compose([ | |
PadToSquare(), | |
transforms.Resize((512, 512), antialias=True), | |
transforms.ToDtype(torch.float32, scale=True), | |
]) | |
self.output_transform = transforms.Normalize(mean=[-1], std=[2]) | |
# Load all VAE models at initialization | |
self.vae_models = self._load_all_vaes() | |
def _load_all_vaes(self) -> Dict[str, AutoencoderKL]: | |
"""Load all available VAE models""" | |
vae_configs = { | |
"stable-diffusion-v1-4": ("CompVis/stable-diffusion-v1-4", "vae"), | |
"sd-vae-ft-mse": ("stabilityai/sd-vae-ft-mse", ""), | |
"sdxl-vae": ("stabilityai/sdxl-vae", ""), | |
"stable-diffusion-3-medium": ("stabilityai/stable-diffusion-3-medium-diffusers", "vae"), | |
"FLUX.1-dev": ("black-forest-labs/FLUX.1-dev", "vae") | |
} | |
vae_dict = {} | |
for name, (path, subfolder) in vae_configs.items(): | |
vae_dict[name] = AutoencoderKL.from_pretrained(path, subfolder=subfolder).to(self.device) | |
return vae_dict | |
def process_image(self, | |
img: torch.Tensor, | |
vae: AutoencoderKL, | |
tolerance: float): | |
"""Process image through a single VAE""" | |
img_transformed = self.input_transform(img).to(self.device).unsqueeze(0) | |
original_base = self.base_transform(img).cpu() | |
with torch.no_grad(): | |
encoded = vae.encode(img_transformed).latent_dist.sample() | |
encoded_scaled = encoded * vae.config.scaling_factor | |
decoded = vae.decode(encoded_scaled / vae.config.scaling_factor).sample | |
decoded_transformed = self.output_transform(decoded.squeeze(0)).cpu() | |
reconstructed = decoded_transformed.clip(0, 1) | |
diff = (original_base - reconstructed).abs() | |
bw_diff = (diff > tolerance).any(dim=0).float() | |
diff_image = transforms.ToPILImage()(bw_diff) | |
recon_image = transforms.ToPILImage()(reconstructed) | |
diff_score = bw_diff.sum().item() | |
return diff_image, recon_image, diff_score | |
def process_all_models(self, | |
img: torch.Tensor, | |
tolerance: float): | |
"""Process image through all loaded VAEs""" | |
results = {} | |
for name, vae in self.vae_models.items(): | |
diff_img, recon_img, score = self.process_image(img, vae, tolerance) | |
results[name] = (diff_img, recon_img, score) | |
return results | |
# Initialize tester | |
tester = VAETester() | |
def test_all_vaes(image_path: str, tolerance: float): | |
"""Gradio interface function to test all VAEs""" | |
try: | |
img_tensor = read_image(image_path) | |
results = tester.process_all_models(img_tensor, tolerance) | |
diff_images = [] | |
recon_images = [] | |
scores = [] | |
for name in tester.vae_models.keys(): | |
diff_img, recon_img, score = results[name] | |
diff_images.append((diff_img, name)) | |
recon_images.append((recon_img, name)) | |
scores.append(f"{name:<25}: {score:.1f}") | |
return diff_images, recon_images, "\n".join(scores) | |
except Exception as e: | |
error_msg = f"Error: {str(e)}" | |
return [None], [None], error_msg | |
examples = [f"examples/{img_filename}" for img_filename in sorted(os.listdir("examples/"))] | |
# Gradio interface | |
with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family: 'Courier New', Courier, monospace;}") as demo: | |
gr.Markdown("# VAE Comparison Tool") | |
gr.Markdown(""" | |
Upload an image or select an example to compare how different VAEs reconstruct it. Here's what happens: | |
1. The image is padded to a square and resized to 512x512 pixels. | |
2. Each VAE encodes the image into a latent space and decodes it back. | |
3. The tool then generates: | |
- **Difference Maps**: Black-and-white images showing where the reconstruction differs from the original (white areas indicate differences above the tolerance threshold). | |
- **Reconstructed Images**: The outputs from each VAE. | |
- **Sum of Differences**: A numerical score for each VAE, measuring the total difference in pixels exceeding the tolerance. | |
Use the tolerance slider to adjust the sensitivity. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="filepath", label="Input Image", height=512) | |
tolerance_slider = gr.Slider( | |
minimum=0.01, | |
maximum=0.5, | |
value=0.1, | |
step=0.01, | |
label="Difference Tolerance", | |
info="Low tolerance (e.g., 0.01): Highly sensitive, flags small deviations. High tolerance (e.g., 0.5): Less sensitive, flags only large deviations, showing fewer differences.", | |
) | |
submit_btn = gr.Button("Test All VAEs") | |
with gr.Column(scale=3): | |
with gr.Row(): | |
diff_gallery = gr.Gallery(label="Difference Maps", columns=4, height=512) | |
recon_gallery = gr.Gallery(label="Reconstructed Images", columns=4, height=512) | |
scores_output = gr.Textbox(label="Sum of difference (lower is better reconstruction)", lines=5, elem_classes="monospace-text") | |
if examples: | |
with gr.Column(): | |
example_gallery = gr.Examples( | |
examples=examples, | |
inputs=image_input, | |
label="Example Images" | |
) | |
submit_btn.click( | |
fn=test_all_vaes, | |
inputs=[image_input, tolerance_slider], | |
outputs=[diff_gallery, recon_gallery, scores_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |