import torch from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import gradio as gr # Define model details MODEL_NAME = "riteshkr/whisper-large-v3-quantized" # Update with your actual model ID BATCH_SIZE = 8 # Select device based on availability of CUDA (GPU) or fallback to CPU device = 0 if torch.cuda.is_available() else "cpu" # Load the ASR model pipeline pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, # Adjust as needed for your application device=device, ) # Utility function to format timestamps def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): if seconds is not None: milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" else: return seconds # Transcription function for batch processing def transcribe(files, task, return_timestamps): transcriptions = [] for file in files: # Process each file in the batch outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=return_timestamps) text = outputs["text"] if return_timestamps: timestamps = outputs["chunks"] formatted_chunks = [ f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" for chunk in timestamps ] text = "\n".join(formatted_chunks) transcriptions.append(text) return "\n\n".join(transcriptions) # Return all transcriptions combined # Define Gradio interface for microphone input mic_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"), gr.Checkbox(default=False, label="Return timestamps"), ], outputs="text", layout="horizontal", title="Whisper Demo: Transcribe Audio", description=( f"Transcribe long-form microphone inputs with the {MODEL_NAME} model. Supports transcription and translation." ), allow_flagging="never", ) # Define Gradio interface for file upload file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="upload", type="filepath", label="Upload Audio File"), gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"), gr.Checkbox(default=False, label="Return timestamps"), ], outputs="text", layout="horizontal", title="Whisper Demo: Transcribe Audio", description=( f"Upload audio files to transcribe or translate them using the {MODEL_NAME} model." ), allow_flagging="never", examples=[ ["./example.flac", "transcribe", False], ["./example.flac", "transcribe", True], ], ) # Create the Gradio tabbed interface for switching between modes demo = gr.Blocks() with demo: gr.TabbedInterface( [mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"] ) # Launch the app if __name__ == "__main__": demo.launch(debug=True, enable_queue=True, share=True)