riteshkr commited on
Commit
8c140fb
1 Parent(s): 3a35350

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -4
app.py CHANGED
@@ -1,21 +1,28 @@
1
  import gradio as gr
 
2
  from transformers import pipeline
3
 
 
 
 
4
  # Load the ASR model using the Hugging Face pipeline
5
  model_id = "riteshkr/quantized-whisper-large-v3" # Update with your model path or ID
6
- pipe = pipeline("automatic-speech-recognition", model=model_id)
7
 
8
- # Define the transcription function
9
  def transcribe_speech(filepath):
 
 
 
10
  output = pipe(
11
  filepath,
12
  max_new_tokens=256,
13
  generate_kwargs={
14
  "task": "transcribe",
15
  "language": "english",
16
- }, # Update the language as per your model's fine-tuning
17
  chunk_length_s=30,
18
- batch_size=8,
19
  )
20
  return output["text"]
21
 
 
1
  import gradio as gr
2
+ import torch
3
  from transformers import pipeline
4
 
5
+ # Check if a GPU is available and set the device
6
+ device = 0 if torch.cuda.is_available() else -1
7
+
8
  # Load the ASR model using the Hugging Face pipeline
9
  model_id = "riteshkr/quantized-whisper-large-v3" # Update with your model path or ID
10
+ pipe = pipeline("automatic-speech-recognition", model=model_id, device=device)
11
 
12
+ # Define the transcription function with batching support
13
  def transcribe_speech(filepath):
14
+ # Adjust batch size based on device (smaller batch for CPU)
15
+ batch_size = 16 if torch.cuda.is_available() else 4
16
+
17
  output = pipe(
18
  filepath,
19
  max_new_tokens=256,
20
  generate_kwargs={
21
  "task": "transcribe",
22
  "language": "english",
23
+ },
24
  chunk_length_s=30,
25
+ batch_size=batch_size, # Dynamic batch size
26
  )
27
  return output["text"]
28