riteshkr commited on
Commit
7754ed5
β€’
1 Parent(s): 5390b32

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -34
app.py CHANGED
@@ -1,47 +1,104 @@
1
- import gradio as gr
2
  from transformers import pipeline
 
 
3
 
4
- # Load the ASR model using the Hugging Face pipeline
5
- model_id = "riteshkr/whisper-large-v3-quantized"
6
- pipe = pipeline("automatic-speech-recognition", model=model_id)
7
-
8
- # Define the transcription function
9
- def transcribe_speech(filepath):
10
- output = pipe(
11
- filepath,
12
- max_new_tokens=256,
13
- generate_kwargs={
14
- "task": "transcribe",
15
- "language": "english",
16
- },
17
- chunk_length_s=30,
18
- batch_size=8,
19
- )
20
- return output["text"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- # Define the Gradio interface for microphone input
23
  mic_transcribe = gr.Interface(
24
- fn=transcribe_speech,
25
- inputs=gr.Audio(sources="microphone", type="filepath"),
26
- outputs=gr.Textbox(),
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  )
28
 
29
- # Define the Gradio interface for file upload input
30
  file_transcribe = gr.Interface(
31
- fn=transcribe_speech,
32
- inputs=gr.Audio(sources="upload", type="filepath"),
33
- outputs=gr.Textbox(),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  )
35
 
36
- # Creating the tabbed layout using Blocks
37
- demo = gr.Blocks()
38
-
39
  with demo:
40
  gr.TabbedInterface(
41
- [mic_transcribe, file_transcribe],
42
- ["Transcribe Microphone", "Transcribe Audio File"],
43
  )
44
 
45
- # Launch the app with debugging enabled
46
- if __name__ == "__main__":
47
- demo.launch(debug=True, share=True)
 
1
+ import torch
2
  from transformers import pipeline
3
+ from transformers.pipelines.audio_utils import ffmpeg_read
4
+ import gradio as gr
5
 
6
+ MODEL_NAME = "riteshkr/whisper-large-v3-quantized"
7
+ BATCH_SIZE = 8
8
+
9
+ device = 0 if torch.cuda.is_available() else "cpu"
10
+
11
+ pipe = pipeline(
12
+ task="automatic-speech-recognition",
13
+ model=MODEL_NAME,
14
+ chunk_length_s=30,
15
+ device=device,
16
+ )
17
+
18
+
19
+ # Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
20
+ def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
21
+ if seconds is not None:
22
+ milliseconds = round(seconds * 1000.0)
23
+
24
+ hours = milliseconds // 3_600_000
25
+ milliseconds -= hours * 3_600_000
26
+
27
+ minutes = milliseconds // 60_000
28
+ milliseconds -= minutes * 60_000
29
+
30
+ seconds = milliseconds // 1_000
31
+ milliseconds -= seconds * 1_000
32
+
33
+ hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
34
+ return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
35
+ else:
36
+ # we have a malformed timestamp so just return it as is
37
+ return seconds
38
+
39
+
40
+ def transcribe(file, task, return_timestamps):
41
+ outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=return_timestamps)
42
+ text = outputs["text"]
43
+ if return_timestamps:
44
+ timestamps = outputs["chunks"]
45
+ timestamps = [
46
+ f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
47
+ for chunk in timestamps
48
+ ]
49
+ text = "\n".join(str(feature) for feature in timestamps)
50
+ return text
51
+
52
+
53
+ demo = gr.Blocks()
54
 
 
55
  mic_transcribe = gr.Interface(
56
+ fn=transcribe,
57
+ inputs=[
58
+ gr.Audio(sources="microphone", type="filepath"),
59
+ gr.Radio(["transcribe", "translate"], label="Task"),
60
+ gr.Checkbox(label="Return timestamps"),
61
+ ],
62
+ outputs="text",
63
+ layout="horizontal",
64
+ theme="huggingface",
65
+ title="Transcribe Audio",
66
+ description=(
67
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
68
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
69
+ " of arbitrary length."
70
+ ),
71
+ allow_flagging="never",
72
  )
73
 
 
74
  file_transcribe = gr.Interface(
75
+ fn=transcribe,
76
+ inputs=[
77
+ gr.Audio(sources="upload", label="Audio file", type="filepath"),
78
+ gr.Radio(["transcribe", "translate"], label="Task"),
79
+ gr.Checkbox(label="Return timestamps"),
80
+ ],
81
+ outputs="text",
82
+ layout="horizontal",
83
+ theme="huggingface",
84
+ title="Transcribe Audio",
85
+ description=(
86
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
87
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
88
+ " of arbitrary length."
89
+ ),
90
+ examples=[
91
+ ["./example.flac", "transcribe", False],
92
+ ["./example.flac", "transcribe", True],
93
+ ],
94
+ cache_examples=True,
95
+ allow_flagging="never",
96
  )
97
 
 
 
 
98
  with demo:
99
  gr.TabbedInterface(
100
+ [mic_transcribe, file_transcribe],
101
+ ["Transcribe Microphone", "Transcribe Audio File"]
102
  )
103
 
104
+ demo.launch(enable_queue=True)