Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,47 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import pipeline
|
3 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if seconds is not None:
|
24 |
-
milliseconds = round(seconds * 1000.0)
|
25 |
-
hours = milliseconds // 3_600_000
|
26 |
-
milliseconds -= hours * 3_600_000
|
27 |
-
minutes = milliseconds // 60_000
|
28 |
-
milliseconds -= minutes * 60_000
|
29 |
-
seconds = milliseconds // 1_000
|
30 |
-
milliseconds -= seconds * 1_000
|
31 |
-
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
32 |
-
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
33 |
-
else:
|
34 |
-
return seconds
|
35 |
-
|
36 |
-
# Transcription function for batch processing
|
37 |
-
def transcribe(files, task, return_timestamps):
|
38 |
-
transcriptions = []
|
39 |
-
for file in files: # Process each file in the batch
|
40 |
-
outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=return_timestamps)
|
41 |
-
text = outputs["text"]
|
42 |
-
if return_timestamps:
|
43 |
-
timestamps = outputs["chunks"]
|
44 |
-
formatted_chunks = [
|
45 |
-
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
|
46 |
-
for chunk in timestamps
|
47 |
-
]
|
48 |
-
text = "\n".join(formatted_chunks)
|
49 |
-
transcriptions.append(text)
|
50 |
-
return "\n\n".join(transcriptions) # Return all transcriptions combined
|
51 |
|
52 |
-
# Define Gradio interface for microphone input
|
53 |
mic_transcribe = gr.Interface(
|
54 |
-
fn=
|
55 |
-
inputs=
|
56 |
-
|
57 |
-
gr.Radio(["transcribe", "translate"], label="Task"),
|
58 |
-
gr.Checkbox(label="Return timestamps"),
|
59 |
-
],
|
60 |
-
outputs="text",
|
61 |
-
layout="horizontal",
|
62 |
-
title="Whisper Demo: Transcribe Audio",
|
63 |
-
description=(
|
64 |
-
f"Transcribe long-form microphone inputs with the {MODEL_NAME} model. Supports transcription and translation."
|
65 |
-
),
|
66 |
-
allow_flagging="never",
|
67 |
)
|
68 |
|
69 |
-
# Define Gradio interface for file upload
|
70 |
file_transcribe = gr.Interface(
|
71 |
-
fn=
|
72 |
-
inputs=
|
73 |
-
|
74 |
-
gr.Radio(["transcribe", "translate"], label="Task"),
|
75 |
-
gr.Checkbox(label="Return timestamps"),
|
76 |
-
],
|
77 |
-
outputs="text",
|
78 |
-
layout="horizontal",
|
79 |
-
title="Whisper Demo: Transcribe Audio",
|
80 |
-
description=(
|
81 |
-
f"Upload audio files to transcribe or translate them using the {MODEL_NAME} model."
|
82 |
-
),
|
83 |
-
allow_flagging="never",
|
84 |
-
examples=[
|
85 |
-
["./example.flac", "transcribe", False],
|
86 |
-
["./example.flac", "transcribe", True],
|
87 |
-
],
|
88 |
)
|
89 |
|
90 |
-
#
|
91 |
demo = gr.Blocks()
|
92 |
|
93 |
with demo:
|
94 |
gr.TabbedInterface(
|
95 |
[mic_transcribe, file_transcribe],
|
96 |
-
["Transcribe Microphone", "Transcribe Audio File"]
|
97 |
)
|
98 |
|
99 |
-
# Launch the app
|
100 |
if __name__ == "__main__":
|
101 |
-
demo.launch(debug=True,
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# Load the ASR model using the Hugging Face pipeline
|
5 |
+
model_id = "riteshkr/whisper-large-v3-quantized" # Update with your model path or ID
|
6 |
+
pipe = pipeline("automatic-speech-recognition", model=model_id)
|
7 |
+
|
8 |
+
# Define the transcription function
|
9 |
+
def transcribe_speech(filepath):
|
10 |
+
output = pipe(
|
11 |
+
filepath,
|
12 |
+
max_new_tokens=256,
|
13 |
+
generate_kwargs={
|
14 |
+
"task": "transcribe",
|
15 |
+
"language": "english",
|
16 |
+
}, # Update the language as per your model's fine-tuning
|
17 |
+
chunk_length_s=30,
|
18 |
+
batch_size=8,
|
19 |
+
)
|
20 |
+
return output["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Define the Gradio interface for microphone input
|
23 |
mic_transcribe = gr.Interface(
|
24 |
+
fn=transcribe_speech,
|
25 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
26 |
+
outputs=gr.Textbox(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
|
29 |
+
# Define the Gradio interface for file upload input
|
30 |
file_transcribe = gr.Interface(
|
31 |
+
fn=transcribe_speech,
|
32 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
33 |
+
outputs=gr.Textbox(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
35 |
|
36 |
+
# Creating the tabbed layout using Blocks
|
37 |
demo = gr.Blocks()
|
38 |
|
39 |
with demo:
|
40 |
gr.TabbedInterface(
|
41 |
[mic_transcribe, file_transcribe],
|
42 |
+
["Transcribe Microphone", "Transcribe Audio File"],
|
43 |
)
|
44 |
|
45 |
+
# Launch the app with debugging enabled
|
46 |
if __name__ == "__main__":
|
47 |
+
demo.launch(debug=True, share=True)
|