google-gemma / app.py
richardkimsm89's picture
Update app.py
83f2140 verified
raw
history blame
4.08 kB
import gradio as gr
from huggingface_hub import InferenceClient
import pytesseract
from PIL import Image
from pypdf import PdfReader
import ocrmypdf
import os
# Image to Text
def fn_image_to_text(input_image):
return pytesseract.image_to_string(Image.open(input_image))
# PDF to Text
def fn_pdf_to_text(input_pdf):
reader = PdfReader(input_pdf)
output_pdf = ""
for page in reader.pages:
output_pdf+=page.extract_text()
image_count = 0
for page in reader.pages:
image_count += len(page.images)
if image_count > 0 and len(output_pdf) < 1000:
input_pdf_ocr = input_pdf.replace(".pdf", " - OCR.pdf")
ocrmypdf.ocr(input_pdf, input_pdf_ocr, force_ocr=True)
reader = PdfReader(input_pdf_ocr)
output_pdf = ""
for page in reader.pages:
output_pdf+=page.extract_text()
os.remove(input_pdf_ocr)
return output_pdf
# Inference
model_text = "google/gemma-2-27b-it"
model_vision = "google/paligemma2-3b-pt-224"
client = InferenceClient()
def fn_text(
prompt,
history,
input,
#system_prompt,
max_tokens,
temperature,
top_p,
):
if input:
if os.path.splitext(input)[1].lower() in [".png", ".jpg", ".jpeg"]:
output = fn_image_to_text(input)
if os.path.splitext(input)[1].lower() == ".pdf":
output = fn_pdf_to_text(input)
else:
output = ""
#messages = [{"role": "system", "content": system_prompt}]
#history.append(messages[0])
#messages.append({"role": "user", "content": prompt})
#history.append(messages[1])
messages = [{"role": "user", "content": prompt + " " + output}]
history.append(messages[0])
stream = client.chat.completions.create(
model = model_text,
messages = history,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_text = gr.ChatInterface(
fn = fn_text,
type = "messages",
additional_inputs = [
gr.File(type="filepath", label="Input"),
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Google Gemma",
description = model_text,
)
def fn_vision(
prompt,
image_url,
#system_prompt,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}]
if image_url:
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}})
stream = client.chat.completions.create(
model = model_vision,
messages = messages,
max_tokens = max_tokens,
temperature = temperature,
top_p = top_p,
stream = True,
)
chunks = []
for chunk in stream:
chunks.append(chunk.choices[0].delta.content or "")
yield "".join(chunks)
app_vision = gr.Interface(
fn = fn_vision,
inputs = [
gr.Textbox(label="Prompt"),
gr.Textbox(label="Image URL")
],
outputs = [
gr.Textbox(label="Output")
],
additional_inputs = [
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
],
title = "Google Gemma",
description = model_vision,
)
app = gr.TabbedInterface(
[app_text, app_vision],
["Text", "Vision"]
).launch()
#if __name__ == "__main__":
# app.launch()