Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import pytesseract | |
from PIL import Image | |
from pypdf import PdfReader | |
import ocrmypdf | |
import os | |
# Image to Text | |
def fn_image_to_text(input_image): | |
return pytesseract.image_to_string(Image.open(input_image)) | |
# PDF to Text | |
def fn_pdf_to_text(input_pdf): | |
reader = PdfReader(input_pdf) | |
output_pdf = "" | |
for page in reader.pages: | |
output_pdf+=page.extract_text() | |
image_count = 0 | |
for page in reader.pages: | |
image_count += len(page.images) | |
if image_count > 0 and len(output_pdf) < 1000: | |
input_pdf_ocr = input_pdf.replace(".pdf", " - OCR.pdf") | |
ocrmypdf.ocr(input_pdf, input_pdf_ocr, force_ocr=True) | |
reader = PdfReader(input_pdf_ocr) | |
output_pdf = "" | |
for page in reader.pages: | |
output_pdf+=page.extract_text() | |
os.remove(input_pdf_ocr) | |
return output_pdf | |
# Inference | |
model_text = "google/gemma-2-27b-it" | |
model_vision = "google/paligemma2-3b-pt-224" | |
client = InferenceClient() | |
def fn_text( | |
prompt, | |
history, | |
input, | |
#system_prompt, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
if input: | |
if os.path.splitext(input)[1].lower() in [".png", ".jpg", ".jpeg"]: | |
output = fn_image_to_text(input) | |
if os.path.splitext(input)[1].lower() == ".pdf": | |
output = fn_pdf_to_text(input) | |
else: | |
output = "" | |
#messages = [{"role": "system", "content": system_prompt}] | |
#history.append(messages[0]) | |
#messages.append({"role": "user", "content": prompt}) | |
#history.append(messages[1]) | |
messages = [{"role": "user", "content": prompt + " " + output}] | |
history.append(messages[0]) | |
stream = client.chat.completions.create( | |
model = model_text, | |
messages = history, | |
max_tokens = max_tokens, | |
temperature = temperature, | |
top_p = top_p, | |
stream = True, | |
) | |
chunks = [] | |
for chunk in stream: | |
chunks.append(chunk.choices[0].delta.content or "") | |
yield "".join(chunks) | |
app_text = gr.ChatInterface( | |
fn = fn_text, | |
type = "messages", | |
additional_inputs = [ | |
gr.File(type="filepath", label="Input"), | |
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
], | |
title = "Google Gemma", | |
description = model_text, | |
) | |
def fn_vision( | |
prompt, | |
image_url, | |
#system_prompt, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}]}] | |
if image_url: | |
messages[0]["content"].append({"type": "image_url", "image_url": {"url": image_url}}) | |
stream = client.chat.completions.create( | |
model = model_vision, | |
messages = messages, | |
max_tokens = max_tokens, | |
temperature = temperature, | |
top_p = top_p, | |
stream = True, | |
) | |
chunks = [] | |
for chunk in stream: | |
chunks.append(chunk.choices[0].delta.content or "") | |
yield "".join(chunks) | |
app_vision = gr.Interface( | |
fn = fn_vision, | |
inputs = [ | |
gr.Textbox(label="Prompt"), | |
gr.Textbox(label="Image URL") | |
], | |
outputs = [ | |
gr.Textbox(label="Output") | |
], | |
additional_inputs = [ | |
#gr.Textbox(value="You are a helpful assistant.", label="System Prompt"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
], | |
title = "Google Gemma", | |
description = model_vision, | |
) | |
app = gr.TabbedInterface( | |
[app_text, app_vision], | |
["Text", "Vision"] | |
).launch() | |
#if __name__ == "__main__": | |
# app.launch() |