|
import os
|
|
import gradio as gr
|
|
import sqlite3
|
|
import sqlparse
|
|
import requests
|
|
import time
|
|
import re
|
|
import platform
|
|
import openai
|
|
import random
|
|
import concurrent.futures
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
StoppingCriteria,
|
|
StoppingCriteriaList,
|
|
)
|
|
|
|
import firebase_admin
|
|
from firebase_admin import credentials, firestore
|
|
import json
|
|
import base64
|
|
import torch
|
|
|
|
print(f"Running on {platform.system()}")
|
|
|
|
if platform.system() == "Windows" or platform.system() == "Darwin":
|
|
from dotenv import load_dotenv
|
|
load_dotenv()
|
|
|
|
quantized_model = "richardr1126/spider-skeleton-wizard-coder-8bit"
|
|
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
|
|
initial_model = "WizardLM/WizardCoder-15B-V1.0"
|
|
lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
|
|
dataset = "richardr1126/spider-skeleton-context-instruct"
|
|
|
|
model_name = os.getenv("HF_MODEL_NAME", None)
|
|
tok = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
max_new_tokens = 1024
|
|
|
|
print(f"Starting to load the model {model_name}")
|
|
|
|
m = AutoModelForCausalLM.from_pretrained(
|
|
model_name,
|
|
device_map=0,
|
|
|
|
)
|
|
|
|
m.config.pad_token_id = m.config.eos_token_id
|
|
m.generation_config.pad_token_id = m.config.eos_token_id
|
|
|
|
print(f"Successfully loaded the model {model_name} into memory")
|
|
|
|
|
|
|
|
base64_string = os.getenv('FIREBASE')
|
|
base64_bytes = base64_string.encode('utf-8')
|
|
json_bytes = base64.b64decode(base64_bytes)
|
|
json_data = json_bytes.decode('utf-8')
|
|
|
|
firebase_auth = json.loads(json_data)
|
|
|
|
|
|
cred = credentials.Certificate(firebase_auth)
|
|
firebase_admin.initialize_app(cred)
|
|
db = firestore.client()
|
|
|
|
def log_message_to_firestore(input_message, db_info, temperature, response_text):
|
|
doc_ref = db.collection('logs').document()
|
|
log_data = {
|
|
'timestamp': firestore.SERVER_TIMESTAMP,
|
|
'temperature': temperature,
|
|
'db_info': db_info,
|
|
'input': input_message,
|
|
'output': response_text,
|
|
}
|
|
doc_ref.set(log_data)
|
|
|
|
rated_outputs = set()
|
|
|
|
def log_rating_to_firestore(input_message, db_info, temperature, response_text, rating):
|
|
global rated_outputs
|
|
output_id = f"{input_message} {db_info} {response_text} {temperature}"
|
|
|
|
if output_id in rated_outputs:
|
|
gr.Warning("You've already rated this output!")
|
|
return
|
|
if not input_message or not response_text or not rating:
|
|
gr.Info("You haven't asked a question yet!")
|
|
return
|
|
|
|
rated_outputs.add(output_id)
|
|
|
|
doc_ref = db.collection('ratings').document()
|
|
log_data = {
|
|
'timestamp': firestore.SERVER_TIMESTAMP,
|
|
'temperature': temperature,
|
|
'db_info': db_info,
|
|
'input': input_message,
|
|
'output': response_text,
|
|
'rating': rating,
|
|
}
|
|
doc_ref.set(log_data)
|
|
gr.Info("Thanks for your feedback!")
|
|
|
|
|
|
def format(text):
|
|
|
|
try:
|
|
final_query = text.split("|")[1].strip()
|
|
except Exception:
|
|
final_query = text
|
|
|
|
try:
|
|
|
|
formatted_query = sqlparse.format(final_query, reindent=True, keyword_case='upper')
|
|
except Exception:
|
|
|
|
formatted_query = final_query
|
|
|
|
|
|
final_query_markdown = f"{formatted_query}"
|
|
|
|
return final_query_markdown
|
|
|
|
def extract_db_code(text):
|
|
print(text)
|
|
text = text.replace(".print", "")
|
|
pattern = r'```(?:\w+)?\s?(.*?)```'
|
|
matches = re.findall(pattern, text, re.DOTALL)
|
|
return [match.strip() for match in matches]
|
|
|
|
def extract_from_code_block(text):
|
|
|
|
pattern = r'```(?:\w+)?\s?(.*?)```'
|
|
match = re.search(pattern, text, re.DOTALL)
|
|
if match:
|
|
return match.group(1).strip()
|
|
|
|
|
|
pattern = r'\((SELECT .*?)\)'
|
|
match = re.search(pattern, text, re.DOTALL)
|
|
if match:
|
|
return match.group(1).strip()
|
|
|
|
|
|
return ""
|
|
|
|
def generate_dummy_db(db_info, question):
|
|
pre_prompt = """
|
|
Generate a SQLite database with dummy data for this database from the DB Layout. Your task is to generate just a database, no queries. For each input do the following:
|
|
1. Breakdown the Question into small pieces and explain what the question is asking for.
|
|
2. Write code to create the specified dummy database using the same exact table and column names used from the DB Layout. Insert dummy data relevant to the Question. Output the datbase code in a single code block. Don't write any queries or SELECT statements in the code.
|
|
"""
|
|
prompt = pre_prompt + "\n\nDB Layout:" + db_info + "\n\nQuestion: " + question
|
|
|
|
while True:
|
|
try:
|
|
response = openai.ChatCompletion.create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{"role": "user", "content": prompt}
|
|
],
|
|
temperature=0.7,
|
|
)
|
|
response_text = response['choices'][0]['message']['content']
|
|
|
|
db_code = extract_db_code(response_text)
|
|
|
|
return db_code
|
|
|
|
except Exception as e:
|
|
print(f'Error occurred: {str(e)}')
|
|
print('Waiting for 10 seconds before retrying...')
|
|
time.sleep(10)
|
|
|
|
def test_query_on_dummy_db(db_code, query):
|
|
try:
|
|
|
|
conn = sqlite3.connect(':memory:')
|
|
cursor = conn.cursor()
|
|
|
|
|
|
for sql_block in db_code:
|
|
statements = sqlparse.split(sql_block)
|
|
|
|
|
|
for statement in statements:
|
|
if statement:
|
|
cursor.execute(statement)
|
|
|
|
|
|
cursor.execute(query)
|
|
print(f"Query: {query}\tResult: {cursor.fetchall()}")
|
|
|
|
|
|
conn.close()
|
|
|
|
|
|
return True
|
|
|
|
except Exception as e:
|
|
print(f"Query: {query}\tError encountered: {e}")
|
|
return False
|
|
|
|
def choose_best_query(queries, question):
|
|
pre_prompt = """
|
|
Given a list of queries. Your task is to choose just a single query which satisfies the question the most with the least amount of filters, groupings, and conditions. For each input do the following:
|
|
1. Breakdown the list of queries into small pieces and explain what each query is doing.
|
|
2. Breakdown the question peice by piece and explain what each part of the question is asking for. If asking to order by, pay close attention to which order the question is asking for.
|
|
3. Output the most relevant query to the question in a single markdown code block. The user will use regex to extract the SQL query, so make sure it is in a code block.
|
|
"""
|
|
prompt = pre_prompt + "\n\nQuestion: " + question + "\n\nQueries:" + "\n\n".join(queries)
|
|
|
|
while True:
|
|
try:
|
|
response = openai.ChatCompletion.create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{"role": "user", "content": prompt}
|
|
],
|
|
temperature=0.7,
|
|
)
|
|
response_text = response['choices'][0]['message']['content']
|
|
print(response_text)
|
|
|
|
query = extract_from_code_block(response_text)
|
|
|
|
return query
|
|
|
|
except Exception as e:
|
|
print(f'Error occurred: {str(e)}')
|
|
print('Waiting for 10 seconds before retrying...')
|
|
time.sleep(10)
|
|
|
|
|
|
def generate(input_message: str, db_info="", temperature=0.2, top_p=0.9, top_k=0, repetition_penalty=1.08, format_sql=True, log=False, num_return_sequences=1, num_beams=1, do_sample=False):
|
|
if num_return_sequences > num_beams:
|
|
gr.Warning("Num return sequences must be less than or equal to num beams.")
|
|
|
|
stop_token_ids = tok.convert_tokens_to_ids(["###"])
|
|
class StopOnTokens(StoppingCriteria):
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
|
for stop_id in stop_token_ids:
|
|
if input_ids[0][-1] == stop_id:
|
|
return True
|
|
return False
|
|
stop = StopOnTokens()
|
|
|
|
|
|
messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"
|
|
|
|
input_ids = tok(messages, return_tensors="pt").input_ids
|
|
input_ids = input_ids.to(m.device)
|
|
generate_kwargs = dict(
|
|
input_ids=input_ids,
|
|
max_new_tokens=max_new_tokens,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
repetition_penalty=repetition_penalty,
|
|
|
|
stopping_criteria=StoppingCriteriaList([stop]),
|
|
num_return_sequences=num_return_sequences,
|
|
num_beams=num_beams,
|
|
do_sample=do_sample,
|
|
)
|
|
|
|
|
|
db_code_future = None
|
|
if num_return_sequences > 1:
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
db_code_future = executor.submit(generate_dummy_db, db_info, input_message)
|
|
|
|
|
|
tokens = m.generate(**generate_kwargs)
|
|
|
|
|
|
if db_code_future:
|
|
db_code = db_code_future.result()
|
|
|
|
responses = []
|
|
for response in tokens:
|
|
response_text = tok.decode(response, skip_special_tokens=True)
|
|
|
|
|
|
response_text = response_text.split("### Response:")[1].strip()
|
|
|
|
query = format(response_text) if format_sql else response_text
|
|
if (num_return_sequences > 1):
|
|
query = query.replace("\n", " ").replace("\t", " ").strip()
|
|
|
|
success = test_query_on_dummy_db(db_code, query)
|
|
|
|
if success:
|
|
responses.append(query)
|
|
else:
|
|
responses.append(query)
|
|
|
|
|
|
if num_return_sequences > 1:
|
|
query = choose_best_query(responses, input_message)
|
|
|
|
query = format(query) if format_sql else query
|
|
responses = [query]
|
|
|
|
output = responses[0]
|
|
|
|
if log:
|
|
|
|
log_message_to_firestore(input_message, db_info, temperature, output)
|
|
|
|
return output
|
|
|
|
|
|
with gr.Blocks(theme='gradio/soft') as demo:
|
|
|
|
header = gr.HTML("""
|
|
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
|
|
<h3 style="text-align: center">π·οΈβ οΈπ§ββοΈ Generate SQL queries from Natural Language π·οΈβ οΈπ§ββοΈ</h3>
|
|
<div style="max-width: 450px; margin: auto; text-align: center">
|
|
<p style="font-size: 12px; text-align: center">β οΈ Should take 30-60s to generate. Please rate the response, it helps a lot. If you get a blank output, the model server is currently down, please try again another time.</p>
|
|
</div>
|
|
""")
|
|
|
|
output_box = gr.Code(label="Generated SQL", lines=2, interactive=False)
|
|
|
|
with gr.Row():
|
|
rate_up = gr.Button("π", variant="secondary")
|
|
rate_down = gr.Button("π", variant="secondary")
|
|
|
|
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
|
|
db_info = gr.Textbox(lines=4, placeholder='Make sure to place your tables information inside || for better results. Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
|
format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True)
|
|
|
|
with gr.Row():
|
|
run_button = gr.Button("Generate SQL", variant="primary")
|
|
clear_button = gr.ClearButton(variant="secondary")
|
|
|
|
with gr.Accordion("Options", open=False):
|
|
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.2, step=0.1)
|
|
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
|
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
|
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
|
|
|
|
with gr.Accordion("Generation strategies", open=False):
|
|
md_description = gr.Markdown("""Increasing num return sequences will increase the number of SQLs generated, but will still yield only the best output of the number of return sequences. SQLs are tested against the db info you provide.""")
|
|
num_return_sequences = gr.Slider(label="Number of return sequences (to generate and test)", minimum=1, maximum=5, value=1, step=1)
|
|
num_beams = gr.Slider(label="Num Beams", minimum=1, maximum=5, value=1, step=1)
|
|
do_sample = gr.Checkbox(label="Do Sample", value=False, interactive=True)
|
|
|
|
info = gr.HTML(f"""
|
|
<p>π Leveraging the <a href='https://huggingface.co./{quantized_model}'><strong>bitsandbytes 8-bit version</strong></a> of <a href='https://huggingface.co./{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
|
<p>π How it's made: <a href='https://huggingface.co./{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co./{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co./{merged_model}'><strong>{merged_model}</strong></a>.</p>
|
|
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co./datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co./{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
|
|
<p>π All inputs/outputs are logged to Firebase to see how the model is doing. You can also leave a rating for each generated SQL the model produces, which gets sent to the database as well.</a></p>
|
|
""")
|
|
|
|
examples = gr.Examples([
|
|
["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["How many students have dogs?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid | pets.pettype = 'Dog' |"],
|
|
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql], fn=generate, cache_examples=False, outputs=output_box)
|
|
|
|
|
|
with gr.Accordion("More Examples", open=False):
|
|
examples = gr.Examples([
|
|
["What is the average weight of pets of all students?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
|
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["For students who have pets, how many pets does each student have? List their ids instead of names.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
|
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["Which student has the oldest pet?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
|
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
|
["List all students who don't have pets.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
|
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql], fn=generate, cache_examples=False, outputs=output_box)
|
|
|
|
|
|
readme_content = requests.get(f"https://huggingface.co./{merged_model}/raw/main/README.md").text
|
|
readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL)
|
|
|
|
with gr.Accordion("π Model Readme", open=True):
|
|
readme = gr.Markdown(
|
|
readme_content,
|
|
)
|
|
|
|
with gr.Accordion("Disabled Options:", open=False):
|
|
log = gr.Checkbox(label="Log to Firebase", value=True, interactive=False)
|
|
|
|
|
|
run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, log, num_return_sequences, num_beams, do_sample], outputs=output_box, api_name="txt2sql")
|
|
clear_button.add([input_text, db_info, output_box])
|
|
|
|
|
|
rate_up.click(fn=log_rating_to_firestore, inputs=[input_text, db_info, temperature, output_box, rate_up])
|
|
rate_down.click(fn=log_rating_to_firestore, inputs=[input_text, db_info, temperature, output_box, rate_down])
|
|
|
|
demo.queue(concurrency_count=1, max_size=20).launch(debug=True) |