richardr1126's picture
added local demo
e6db544
raw
history blame
17.9 kB
import os
import gradio as gr
import sqlite3
import sqlparse
import requests
import time
import re
import platform
import openai
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
)
# Additional Firebase imports
import firebase_admin
from firebase_admin import credentials, firestore
import json
import base64
import torch
print(f"Running on {platform.system()}")
from dotenv import load_dotenv
load_dotenv()
quantized_model = "richardr1126/spider-skeleton-wizard-coder-8bit"
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
initial_model = "WizardLM/WizardCoder-15B-V1.0"
lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
dataset = "richardr1126/spider-skeleton-context-instruct"
model_name = os.getenv("HF_MODEL_NAME", None)
tok = AutoTokenizer.from_pretrained(model_name)
max_new_tokens = 1024
print(f"Starting to load the model {model_name}")
m = AutoModelForCausalLM.from_pretrained(
model_name,
#device_map="cpu",
low_cpu_mem_usage=True
#load_in_8bit=True,
)
m.config.pad_token_id = m.config.eos_token_id
m.generation_config.pad_token_id = m.config.eos_token_id
print(f"Successfully loaded the model {model_name} into memory")
################# Firebase code #################
# Initialize Firebase
base64_string = os.getenv('FIREBASE')
base64_bytes = base64_string.encode('utf-8')
json_bytes = base64.b64decode(base64_bytes)
json_data = json_bytes.decode('utf-8')
firebase_auth = json.loads(json_data)
# Load credentials and initialize Firestore
cred = credentials.Certificate(firebase_auth)
firebase_admin.initialize_app(cred)
db = firestore.client()
def log_message_to_firestore(input_message, db_info, temperature, response_text):
doc_ref = db.collection('logs').document()
log_data = {
'timestamp': firestore.SERVER_TIMESTAMP,
'temperature': temperature,
'db_info': db_info,
'input': input_message,
'output': response_text,
}
doc_ref.set(log_data)
rated_outputs = set() # set to store already rated outputs
def log_rating_to_firestore(input_message, db_info, temperature, response_text, rating):
global rated_outputs
output_id = f"{input_message} {db_info} {response_text} {temperature}"
if output_id in rated_outputs:
gr.Warning("You've already rated this output!")
return
if not input_message or not response_text or not rating:
gr.Info("You haven't asked a question yet!")
return
rated_outputs.add(output_id)
doc_ref = db.collection('ratings').document()
log_data = {
'timestamp': firestore.SERVER_TIMESTAMP,
'temperature': temperature,
'db_info': db_info,
'input': input_message,
'output': response_text,
'rating': rating,
}
doc_ref.set(log_data)
gr.Info("Thanks for your feedback!")
############### End Firebase code ###############
def format(text):
# Split the text by "|", and get the last element in the list which should be the final query
try:
final_query = text.split("|")[1].strip()
except Exception:
final_query = text
try:
# Attempt to format SQL query using sqlparse
formatted_query = sqlparse.format(final_query, reindent=True, keyword_case='upper')
except Exception:
# If formatting fails, use the original, unformatted query
formatted_query = final_query
# Convert SQL to markdown (not required, but just to show how to use the markdown module)
final_query_markdown = f"{formatted_query}"
return final_query_markdown
def extract_db_code(text):
pattern = r'```(?:\w+)?\s?(.*?)```'
matches = re.findall(pattern, text, re.DOTALL)
return [match.strip() for match in matches]
def generate_dummy_db(db_info, question, query):
pre_prompt = "Generate a SQLite database with dummy data for this database, output the SQL code in a SQL code block. Make sure you add dummy data relevant to the question and query.\n\n"
prompt = pre_prompt + db_info + "\n\nQuestion: " + question + "\nQuery: " + query
while True:
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": prompt}
],
#temperature=0.7,
)
response_text = response['choices'][0]['message']['content']
db_code = extract_db_code(response_text)
return db_code
except Exception as e:
print(f'Error occurred: {str(e)}')
print('Waiting for 20 seconds before retrying...')
time.sleep(20)
def test_query_on_dummy_db(db_code, query):
try:
# Connect to an SQLite database in memory
conn = sqlite3.connect(':memory:')
cursor = conn.cursor()
# Iterate over each extracted SQL block and split them into individual commands
for sql_block in db_code:
statements = sqlparse.split(sql_block)
# Execute each SQL command
for statement in statements:
if statement:
cursor.execute(statement)
# Run the provided test query against the database
cursor.execute(query)
print(cursor.fetchall())
# Close the connection
conn.close()
# If everything executed without errors, return True
return True
except Exception as e:
print(f"Error encountered: {e}")
return False
def generate(input_message: str, db_info="", temperature=0.2, top_p=0.9, top_k=0, repetition_penalty=1.08, format_sql=True, log=False, num_return_sequences=1, num_beams=1, do_sample=False):
stop_token_ids = tok.convert_tokens_to_ids(["###"])
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_id in stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
stop = StopOnTokens()
# Format the user's input message
messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"
input_ids = tok(messages, return_tensors="pt").input_ids
input_ids = input_ids.to(m.device)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
#streamer=streamer,
stopping_criteria=StoppingCriteriaList([stop]),
num_return_sequences=num_return_sequences,
num_beams=num_beams,
do_sample=do_sample,
)
tokens = m.generate(**generate_kwargs)
responses = []
for response in tokens:
response_text = tok.decode(response, skip_special_tokens=True)
# Only take what comes after ### Response:
response_text = response_text.split("### Response:")[1].strip()
query = format(response_text) if format_sql else response_text
if (num_return_sequences > 1):
query = query.replace("\n", " ").replace("\t", " ").strip()
# Test against dummy database
db_code = generate_dummy_db(db_info, input_message, query)
success = test_query_on_dummy_db(db_code, query)
# Format again
query = format(query) if format_sql else query
if success:
responses.append(query)
else:
responses.append(query)
# Choose the first response
output = responses[0] if responses else ""
if log:
# Log the request to Firestore
log_message_to_firestore(input_message, db_info, temperature, output)
return output
# Gradio UI Code
with gr.Blocks(theme='gradio/soft') as demo:
# Elements stack vertically by default just define elements in order you want them to stack
header = gr.HTML("""
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
<h3 style="text-align: center">πŸ•·οΈβ˜ οΈπŸ§™β€β™‚οΈ Generate SQL queries from Natural Language πŸ•·οΈβ˜ οΈπŸ§™β€β™‚οΈ</h3>
<div style="max-width: 450px; margin: auto; text-align: center">
<p style="font-size: 12px; text-align: center">⚠️ Should take 30-60s to generate. Please rate the response, it helps a lot. If you get a blank output, the model server is currently down, please try again another time.</p>
</div>
""")
output_box = gr.Code(label="Generated SQL", lines=2, interactive=False)
with gr.Row():
rate_up = gr.Button("πŸ‘", variant="secondary")
rate_down = gr.Button("πŸ‘Ž", variant="secondary")
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
db_info = gr.Textbox(lines=4, placeholder='Make sure to place your tables information inside || for better results. Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True)
with gr.Row():
run_button = gr.Button("Generate SQL", variant="primary")
clear_button = gr.ClearButton(variant="secondary")
with gr.Accordion("Options", open=False):
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.2, step=0.1)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
with gr.Accordion("Generation strategies", open=False):
md_description = gr.Markdown("""Increasing num return sequences will increase the number of SQLs generated, but will still yield only the best output of the number of return sequences. SQLs are tested against the db info you provide.""")
num_return_sequences = gr.Slider(label="Number of return sequences (to generate and test)", minimum=1, maximum=5, value=1, step=1)
num_beams = gr.Slider(label="Num Beams", minimum=1, maximum=5, value=1, step=1)
do_sample = gr.Checkbox(label="Do Sample", value=False, interactive=True)
info = gr.HTML(f"""
<p>🌐 Leveraging the <a href='https://huggingface.co./{quantized_model}'><strong>bitsandbytes 8-bit version</strong></a> of <a href='https://huggingface.co./{merged_model}'><strong>{merged_model}</strong></a> model.</p>
<p>πŸ”— How it's made: <a href='https://huggingface.co./{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co./{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co./{merged_model}'><strong>{merged_model}</strong></a>.</p>
<p>πŸ“‰ Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co./datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co./{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
<p>πŸ“Š All inputs/outputs are logged to Firebase to see how the model is doing. You can also leave a rating for each generated SQL the model produces, which gets sent to the database as well.</a></p>
""")
examples = gr.Examples([
["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["How many students have dogs?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid | pets.pettype = 'Dog' |"],
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql], fn=generate, cache_examples=False if platform.system() == "Windows" or platform.system() == "Darwin" else True, outputs=output_box)
with gr.Accordion("More Examples", open=False):
examples = gr.Examples([
["What is the average weight of pets of all students?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["For students who have pets, how many pets does each student have? List their ids instead of names.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["Which student has the oldest pet?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
["List all students who don't have pets.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql], fn=generate, cache_examples=False, outputs=output_box)
readme_content = requests.get(f"https://huggingface.co./{merged_model}/raw/main/README.md").text
readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL) #Remove YAML front matter
with gr.Accordion("πŸ“– Model Readme", open=True):
readme = gr.Markdown(
readme_content,
)
with gr.Accordion("Disabled Options:", open=False):
log = gr.Checkbox(label="Log to Firebase", value=True, interactive=False)
# When the button is clicked, call the generate function, inputs are taken from the UI elements, outputs are sent to outputs elements
run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, log, num_return_sequences, num_beams, do_sample], outputs=output_box, api_name="txt2sql")
clear_button.add([input_text, db_info, output_box])
# Firebase code - for rating the generated SQL (remove if you don't want to use Firebase)
rate_up.click(fn=log_rating_to_firestore, inputs=[input_text, db_info, temperature, output_box, rate_up])
rate_down.click(fn=log_rating_to_firestore, inputs=[input_text, db_info, temperature, output_box, rate_down])
demo.queue(concurrency_count=1, max_size=20).launch(debug=True)