File size: 8,354 Bytes
9a64205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2483b1
9a64205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2483b1
 
 
 
 
 
 
 
 
 
9a64205
 
 
 
 
 
 
 
 
a2483b1
 
9a64205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442f97c
1779f92
9a64205
 
 
 
442f97c
19a3899
 
1779f92
9a64205
 
 
 
 
 
 
 
19a3899
9a64205
 
 
 
 
 
 
 
 
 
 
a2483b1
 
9a64205
 
a2483b1
9a64205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a3899
 
9a64205
 
19a3899
 
 
9a64205
 
 
 
 
19a3899
 
 
 
9a64205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442f97c
 
 
 
9a64205
 
 
 
 
 
 
 
 
de5bc26
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import nomic
import pandas as pd
from tqdm import tqdm
from datasets import load_dataset, \
                     get_dataset_split_names, \
                     get_dataset_config_names, \
                     ClassLabel, utils

utils.logging.set_verbosity_error()
import pyarrow as pa
from dateutil.parser import parse
import time


def get_datum_fields(dataset_dict, n_samples = 100, unique_cutoff=20):
    # take a sample of points
    dataset = dataset_dict["first_split_dataset"]
    sample = pd.DataFrame(dataset.shuffle(seed=42).take(n_samples))
    features = dataset.features
    
    indexable_field = None
    numeric_fields = []
    string_fields = []
    bool_fields = []
    list_fields = []
    label_fields = []
    categorical_fields = []
    datetime_fields = []
    uncategorized_fields = []

    if unique_cutoff < 1:
        unique_cutoff = unique_cutoff*len(sample)
    
    for field, dtype in dataset_dict["schema"].items():
        try:
            num_unique = sample[field].nunique()
        except:
            num_unique = len(sample)
        
        if dtype == "string":
            if num_unique < unique_cutoff:
                categorical_fields.append(field)
            else:
                is_datetime = True
                for row in sample:
                    try:
                        parse(row[field], fuzzy=False)
                    except:
                        is_datetime = False
                        break
                if is_datetime:
                    datetime_fields.append(field)
                else:
                    string_fields.append(field)

        elif dtype in ("float"):
            numeric_fields.append(field)
    
        elif dtype in ("int64", "int32", "int16", "int8"):
            if features is not None and field in features and isinstance(features[field], ClassLabel):
                label_fields.append(field)
            elif num_unique < unique_cutoff:
                categorical_fields.append(field)
            else:
                numeric_fields.append(field)
    
        elif dtype == "bool":
            bool_fields.append(field)

        elif "list" == dtype[0:4]:
            list_fields.append(field)

        else:
            uncategorized_fields.append(field)

    longest_length = 0
    for field in string_fields:
        length = 0
        for i in range(len(sample)):
            if sample[field][i]:
                length += len(str(sample[field][i]).split())
        if length > longest_length:
            longest_length = length
            indexable_field = field
    
    return features, \
           numeric_fields, \
           string_fields, \
           bool_fields, \
           list_fields, \
           label_fields, \
           categorical_fields, \
           datetime_fields, \
           uncategorized_fields, \
           indexable_field


def load_dataset_and_metadata(dataset_name, 
                              config=None, 
                              streaming=True):

    configs = get_dataset_config_names(dataset_name)
    if config is None:
        config = configs[0]
    
    splits = get_dataset_split_names(dataset_name, config)
    dataset = load_dataset(dataset_name, config, split = splits[0], streaming=streaming)
    head = pa.Table.from_pydict(dataset._head())
    
    schema_dict = {field.name: str(field.type) for field in head.schema}

    dataset_dict = {
        "first_split_dataset": dataset,
        "name": dataset_name,
        "config": config,
        "splits": splits,
        "schema": schema_dict,
        "head": head
    }

    return dataset_dict


def upload_dataset_to_atlas(dataset_dict, 
                            atlas_api_token: str,
                            project_name = None,
                            unique_id_field_name=None, 
                            indexed_field = None, 
                            modality=None,
                            organization_name=None,
                            wait_for_map=True,
                            datum_limit=30000):
    nomic.login(atlas_api_token)

    if modality is None:
        modality = "text"

    if unique_id_field_name is None:
        unique_id_field_name = "atlas_datum_id"

    if project_name is None:
        project_name = dataset_dict["name"].replace("/", "--") + "--hf-atlas-map"

    desc = f"Config: {dataset_dict['config']}"

    features, \
    numeric_fields, \
    string_fields, \
    bool_fields, \
    list_fields, \
    label_fields, \
    categorical_fields, \
    datetime_fields, \
    uncategorized_fields, \
    indexable_field = get_datum_fields(dataset_dict)

    if indexed_field is None:
        indexed_field = indexable_field

    topic_label_field = None
    if modality == "embedding":
        topic_label_field = indexed_field
        indexed_field = None


    easy_fields = string_fields + bool_fields + list_fields + categorical_fields
    
    proj = nomic.AtlasProject(name=project_name, 
                              modality=modality, 
                              unique_id_field=unique_id_field_name, 
                              organization_name=organization_name,
                              description=desc,
                              reset_project_if_exists=True)
    
    colorable_fields = ["split"]
    
    batch_size = 1000
    batched_texts = []

    allow_upload = True

    for split in dataset_dict["splits"]:

        if not allow_upload:
            break

        dataset = load_dataset(dataset_dict["name"], dataset_dict["config"], split = split, streaming=True)

        for i, ex in tqdm(enumerate(dataset)):
            if i % 10000 == 0:
                time.sleep(2)
            if i == datum_limit:
                print("Datum upload limited to 30,000 points. Stopping upload...")
                allow_upload = False
                break

            data_to_add = {"split": split, unique_id_field_name: f"{split}_{i}"}

            for field in numeric_fields:
                data_to_add[field] = ex[field]

            for field in easy_fields:
                val = ""
                if ex[field]:
                    val = str(ex[field])
                data_to_add[field] = val

            for field in datetime_fields:
                try: 
                    data_to_add[field] = parse(ex[field], fuzzy=False)
                except:
                    data_to_add[field] = None

            for field in label_fields:
                label_name = ""
                if ex[field] is not None:
                    index = ex[field]
                    # NOTE: THIS MAY BREAK if -1 is ACTUALLY NO LABEL
                    if index != -1:
                        label_name = features[field].names[ex[field]]
                data_to_add[field] = str(ex[field])
                data_to_add[field + "_name"] = label_name
                colorable_fields.add(field + "_name")

            for field in list_fields:
                list_str = ""
                if ex[field]:
                    try:
                        list_str = str(ex[field])
                    except:
                        continue
                data_to_add[field] = list_str 

            batched_texts.append(data_to_add)

            if len(batched_texts) >= batch_size:
                proj.add_text(batched_texts)
                batched_texts = []

    if len(batched_texts) > 0:
        proj.add_text(batched_texts)
    
    colorable_fields = colorable_fields + \
        categorical_fields + label_fields + bool_fields + datetime_fields

    projection = proj.create_index(name=project_name + " index",
            indexed_field=indexed_field,
            colorable_fields=colorable_fields,
            topic_label_field = topic_label_field,
            build_topic_model=True)
    
    if wait_for_map:
        with proj.wait_for_project_lock():
            time.sleep(1)
    
    return projection.map_link

# Run test
if __name__ == "__main__":
    dataset_name = "databricks/databricks-dolly-15k"
    #dataset_name = "fka/awesome-chatgpt-prompts"
    project_name = "huggingface_auto_upload_test-dolly-15k"

    dataset_dict = load_dataset_and_metadata(dataset_name)
    api_token = "ODdPKqJHYci4Gq4jnCC5-VR0L-rnIdfIy-6djgC4CTPCJ"
    print(upload_dataset_to_atlas(dataset_dict, api_token, project_name=project_name))