import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "cross-encoder/multi-nli-xlm-r-100" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def generate_prediction(input_text): input_ids = tokenizer.encode(input_text, truncation=True, padding=True, return_tensors='pt') outputs = model(input_ids) predicted_label = torch.argmax(outputs.logits) label_map = {0: "entailment", 1: "neutral", 2: "contradiction"} predicted_label_text = label_map[predicted_label.item()] return predicted_label_text input_text = gr.inputs.Textbox(label="Input text") output_text = gr.outputs.Textbox(label="Output text") gr.Interface( generate_prediction, inputs=input_text, outputs=output_text, title="Text Classifier", description="A Hugging Face cross-encoder model for text classification.", ).launch()