File size: 7,628 Bytes
2922ea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import streamlit as st
import pandas as pd
import json
import nltk
import re
nltk.download("punkt")
with open("_perception_cache.json") as f:
s2s = json.load(f)
with open("_analysis_cache.json") as f:
s2f = json.load(f)
db = pd.read_excel("data.xlsx")
FRAMES_OF_INTEREST = ["Abusing", "Attack", "Hit_target", "Quarreling", "Use_firearm", "Death", "Dead_or_alive", "Experience_bodily_harm", "Cause_harm", "Killing", "Event", "Catastrophe", "Offenses"]
def get_frame_analysis(s):
frame_analysis = []
if s not in s2f:
return None
for fns in s2f[s]["sociofillmore"][0]["fn_structures"]:
# if True:
if fns["frame"] in FRAMES_OF_INTEREST:
analysis = {
"frame": fns["frame"],
"trigger": " ".join(fns["target"]["tokens_str"])
}
analysis.update({
rol[0]: " ".join(rol[1]["tokens_str"]) for rol in fns["roles"]
})
frame_analysis.append(analysis)
if len(frame_analysis) > 0:
return pd.DataFrame(frame_analysis)
else:
return None
def analyze_document(doc):
if not pd.isna(doc):
sentences = nltk.sent_tokenize(
doc,
language="english"
)
else:
sentences = []
perception_tables = []
frame_tables = []
for si, s in enumerate(sentences[:20]):
frame_analysis_df = get_frame_analysis(s)
frame_tables.append(frame_analysis_df)
perception_tables.append(s2s.get(s))
return sentences, perception_tables, frame_tables
st.write("# LorentzFillmore: WATCH YOUR LANGUAGE")
st.dataframe(db)
st.write("## Writing Exercises & Perception Scores")
text_columns = [col for col in db.columns if col.startswith("Writing exercise:")]
selected_column = st.selectbox(label="Writing exercise:", options=text_columns)
aggregate_sentences = st.checkbox(label="Aggregate over sentences?")
perception_rows = []
for _, row in db.iterrows():
sentences, perception_tables, frame_tables = analyze_document(row[selected_column])
# mean_blame_score = pd.DataFrame(perception_tables).mean()["blame-assassin"]
if aggregate_sentences:
perception_row = {
"writer": row["Email Address"],
"gender": row["I identify as ..."],
"language": row["What is your native language?"],
"background": row["What is your background?"],
"text": sentences
}
for k, v in pd.DataFrame(perception_tables).mean().to_dict().items():
perception_row[k] = v
perception_rows.append(perception_row)
else:
for s, pt, ft in zip(sentences, perception_tables, frame_tables):
perception_row = {
"writer": row["Email Address"],
"gender": row["I identify as ..."],
"language": row["What is your native language?"],
"background": row["What is your background?"],
"text": s
}
for k, v in pd.Series(pt).to_dict().items():
perception_row[k] = v
perception_rows.append(perception_row)
perception_df = pd.DataFrame(perception_rows)
dimension = st.selectbox(label="Which dimension of perception?", options=["blame", "cause", "focus"])
dim_cols = [col for col in perception_df.columns if col.startswith(dimension)]
dim_df = (
perception_df[["writer", "text"] + dim_cols]
.style.background_gradient(subset=dim_cols, axis=None, vmin=-2, vmax=2, cmap="YlGnBu")
)
st.dataframe(dim_df)
st.write("### Analysis by demographic attribute")
demo_attrib = st.selectbox("Select demographic attribute:", options=["writer", "gender", "language", "background"])
perc_attrib = st.selectbox("Select perception attribute", options=dim_cols)
st.plotly_chart(perception_df.groupby(demo_attrib).agg({perc_attrib: "mean"}).plot.bar(backend="plotly"))
st.write("## Comparing versions")
v_number = int(re.search(r"version (\d)", selected_column).group(1))
if v_number < 2:
st.warning("To compare versions, select a writing exercise with version number 2 or higher.")
else:
prev_version = re.sub(r"version (\d)", f"version {v_number - 1}", selected_column)
assert prev_version in text_columns
st.info(f"Comparing _{selected_column.replace('Writing exercise: ', '')}_ ↔️ _{prev_version.replace('Writing exercise: ', '')}_")
perception_diff_rows = []
for _, row in db.iterrows():
sentences, perception_tables, frame_tables = analyze_document(row[selected_column])
prev_sentences, prev_perception_tables, prev_frame_tables = analyze_document(row[prev_version])
perception_diff_row = {
"writer": row["Email Address"],
"gender": row["I identify as ..."],
"language": row["What is your native language?"],
"background": row["What is your background?"],
f"text_v{v_number - 1}": prev_sentences,
f"text_v{v_number}": sentences
}
perc_new = pd.DataFrame(perception_tables).mean().to_dict()
perc_old = pd.DataFrame(prev_perception_tables).mean().to_dict()
for k, v in perc_new.items():
if k not in perc_old:
perception_diff_row[k] = 0
else:
perception_diff_row[k] = v - perc_old[k]
perception_diff_rows.append(perception_diff_row)
perception_diff_df = pd.DataFrame(perception_diff_rows)
dim_diff_df = (
perception_diff_df[["writer", f"text_v{v_number - 1}", f"text_v{v_number}"] + dim_cols]
.style.background_gradient(subset=dim_cols, axis=None, vmin=-2, vmax=2, cmap="YlGnBu")
)
st.dataframe(dim_diff_df)
st.write("### Analysis by demographic attribute")
demo_attrib_diff = st.selectbox("Select demographic attribute for diff:", options=["writer", "gender", "language", "background"])
perc_attrib_diff = st.selectbox("Select perception attribute for diff", options=dim_cols)
st.plotly_chart(perception_diff_df.groupby(demo_attrib_diff).agg({perc_attrib_diff: "mean"}).plot.bar(backend="plotly"))
st.write("## Frame analysis")
only_sentences_with_relevant_frames = st.checkbox("Only analyze sentences containing relevant frames?")
selected_writer = st.selectbox(
label="Select a writer:",
options=sorted([f"{row['Email Address']}" for idx, row in db.iterrows()])
)
st.write("----")
writer_row = db[db["Email Address"] == selected_writer].iloc[0]
st.write("### Text information")
st.dataframe(writer_row)
sentences, perception_tables, frame_tables = analyze_document(writer_row[selected_column])
st.write("### Analysis of the entire document")
mean_perception = pd.DataFrame(perception_tables).mean().to_frame(name="mean perception")
st.dataframe(mean_perception.style.highlight_max(axis=0), width=500)
st.write("---")
st.write("### Analysis by sentence")
for si, s in enumerate(sentences[:20]):
frame_analysis_df = frame_tables[si]
if frame_analysis_df is None and only_sentences_with_relevant_frames:
continue
st.write(f"#### Sentence #{1+si:02}/{len(sentences[:20])}\n*{s}*")
if s not in s2s or s not in s2f:
st.write("(Analysis not found)")
continue
st.write("##### Perception")
perception_table = perception_tables[si]
perception_df = pd.Series(perception_table).to_frame(name="predicted perception").style.highlight_max(axis=0)
st.dataframe(perception_df, width=500)
if frame_analysis_df is not None:
st.write("##### Relevant frames")
st.dataframe(frame_analysis_df, width=750) |