Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,31 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from langchain.llms import GenerativeModel
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
|
8 |
-
# Configure the model
|
9 |
-
llm = GenerativeModel("google-llm/text-davinci-003", api_key=API_KEY)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
Sends user input to Gemini and returns its response.
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
if user_input.lower() == "quit":
|
28 |
-
break
|
29 |
-
response = generate_response(user_input)
|
30 |
-
st.write( {response})
|
|
|
1 |
+
import gradio
|
2 |
+
from transformers import pipeline
|
|
|
3 |
|
4 |
+
# Initialize the Hugging Face model
|
5 |
+
model = pipeline(model='google/flan-t5-large')
|
6 |
|
|
|
|
|
7 |
|
8 |
+
# Define the chatbot function
|
9 |
+
def chatbot(input_text):
|
|
|
10 |
|
11 |
+
prompt = f"Give the answer of the given input in context from the bhagwat geeta. give suggestions to user which are based upon the meanings of shlok in bhagwat geeta, input = {input_text}"
|
12 |
+
# Generate a response from the Hugging Face model
|
13 |
+
response = model(prompt, max_length=250, do_sample=True)[0]['generated_text'].strip()
|
14 |
+
|
15 |
+
# Return the bot response
|
16 |
+
return response
|
17 |
|
18 |
+
# Define the Gradio interface
|
19 |
+
gradio_interface = gradio.Interface(
|
20 |
+
fn=chatbot,
|
21 |
+
inputs='text',
|
22 |
+
outputs='text',
|
23 |
+
title='Chatbot',
|
24 |
+
description='A weird chatbot conversations experience.',
|
25 |
+
examples=[
|
26 |
+
['Hi, how are you?']
|
27 |
+
]
|
28 |
+
)
|
29 |
|
30 |
+
# Launch the Gradio interface
|
31 |
+
gradio_interface.launch()
|
|
|
|
|
|
|
|