|
import cv2 |
|
import math |
|
import numpy as np |
|
import random |
|
import torch |
|
from collections import OrderedDict |
|
from os import path as osp |
|
|
|
from basicsr.archs import build_network |
|
from basicsr.losses import build_loss |
|
from basicsr.losses.gan_loss import g_path_regularize, r1_penalty |
|
from basicsr.utils import imwrite, tensor2img |
|
from basicsr.utils.registry import MODEL_REGISTRY |
|
from .base_model import BaseModel |
|
|
|
|
|
@MODEL_REGISTRY.register() |
|
class StyleGAN2Model(BaseModel): |
|
"""StyleGAN2 model.""" |
|
|
|
def __init__(self, opt): |
|
super(StyleGAN2Model, self).__init__(opt) |
|
|
|
|
|
self.net_g = build_network(opt['network_g']) |
|
self.net_g = self.model_to_device(self.net_g) |
|
self.print_network(self.net_g) |
|
|
|
load_path = self.opt['path'].get('pretrain_network_g', None) |
|
if load_path is not None: |
|
param_key = self.opt['path'].get('param_key_g', 'params') |
|
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key) |
|
|
|
|
|
self.num_style_feat = opt['network_g']['num_style_feat'] |
|
num_val_samples = self.opt['val'].get('num_val_samples', 16) |
|
self.fixed_sample = torch.randn(num_val_samples, self.num_style_feat, device=self.device) |
|
|
|
if self.is_train: |
|
self.init_training_settings() |
|
|
|
def init_training_settings(self): |
|
train_opt = self.opt['train'] |
|
|
|
|
|
self.net_d = build_network(self.opt['network_d']) |
|
self.net_d = self.model_to_device(self.net_d) |
|
self.print_network(self.net_d) |
|
|
|
|
|
load_path = self.opt['path'].get('pretrain_network_d', None) |
|
if load_path is not None: |
|
param_key = self.opt['path'].get('param_key_d', 'params') |
|
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key) |
|
|
|
|
|
|
|
|
|
self.net_g_ema = build_network(self.opt['network_g']).to(self.device) |
|
|
|
load_path = self.opt['path'].get('pretrain_network_g', None) |
|
if load_path is not None: |
|
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema') |
|
else: |
|
self.model_ema(0) |
|
|
|
self.net_g.train() |
|
self.net_d.train() |
|
self.net_g_ema.eval() |
|
|
|
|
|
|
|
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) |
|
|
|
self.r1_reg_weight = train_opt['r1_reg_weight'] |
|
self.path_reg_weight = train_opt['path_reg_weight'] |
|
|
|
self.net_g_reg_every = train_opt['net_g_reg_every'] |
|
self.net_d_reg_every = train_opt['net_d_reg_every'] |
|
self.mixing_prob = train_opt['mixing_prob'] |
|
|
|
self.mean_path_length = 0 |
|
|
|
|
|
self.setup_optimizers() |
|
self.setup_schedulers() |
|
|
|
def setup_optimizers(self): |
|
train_opt = self.opt['train'] |
|
|
|
net_g_reg_ratio = self.net_g_reg_every / (self.net_g_reg_every + 1) |
|
if self.opt['network_g']['type'] == 'StyleGAN2GeneratorC': |
|
normal_params = [] |
|
style_mlp_params = [] |
|
modulation_conv_params = [] |
|
for name, param in self.net_g.named_parameters(): |
|
if 'modulation' in name: |
|
normal_params.append(param) |
|
elif 'style_mlp' in name: |
|
style_mlp_params.append(param) |
|
elif 'modulated_conv' in name: |
|
modulation_conv_params.append(param) |
|
else: |
|
normal_params.append(param) |
|
optim_params_g = [ |
|
{ |
|
'params': normal_params, |
|
'lr': train_opt['optim_g']['lr'] |
|
}, |
|
{ |
|
'params': style_mlp_params, |
|
'lr': train_opt['optim_g']['lr'] * 0.01 |
|
}, |
|
{ |
|
'params': modulation_conv_params, |
|
'lr': train_opt['optim_g']['lr'] / 3 |
|
} |
|
] |
|
else: |
|
normal_params = [] |
|
for name, param in self.net_g.named_parameters(): |
|
normal_params.append(param) |
|
optim_params_g = [{ |
|
'params': normal_params, |
|
'lr': train_opt['optim_g']['lr'] |
|
}] |
|
|
|
optim_type = train_opt['optim_g'].pop('type') |
|
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio |
|
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio) |
|
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas) |
|
self.optimizers.append(self.optimizer_g) |
|
|
|
|
|
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1) |
|
if self.opt['network_d']['type'] == 'StyleGAN2DiscriminatorC': |
|
normal_params = [] |
|
linear_params = [] |
|
for name, param in self.net_d.named_parameters(): |
|
if 'final_linear' in name: |
|
linear_params.append(param) |
|
else: |
|
normal_params.append(param) |
|
optim_params_d = [ |
|
{ |
|
'params': normal_params, |
|
'lr': train_opt['optim_d']['lr'] |
|
}, |
|
{ |
|
'params': linear_params, |
|
'lr': train_opt['optim_d']['lr'] * (1 / math.sqrt(512)) |
|
} |
|
] |
|
else: |
|
normal_params = [] |
|
for name, param in self.net_d.named_parameters(): |
|
normal_params.append(param) |
|
optim_params_d = [{ |
|
'params': normal_params, |
|
'lr': train_opt['optim_d']['lr'] |
|
}] |
|
|
|
optim_type = train_opt['optim_d'].pop('type') |
|
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio |
|
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio) |
|
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas) |
|
self.optimizers.append(self.optimizer_d) |
|
|
|
def feed_data(self, data): |
|
self.real_img = data['gt'].to(self.device) |
|
|
|
def make_noise(self, batch, num_noise): |
|
if num_noise == 1: |
|
noises = torch.randn(batch, self.num_style_feat, device=self.device) |
|
else: |
|
noises = torch.randn(num_noise, batch, self.num_style_feat, device=self.device).unbind(0) |
|
return noises |
|
|
|
def mixing_noise(self, batch, prob): |
|
if random.random() < prob: |
|
return self.make_noise(batch, 2) |
|
else: |
|
return [self.make_noise(batch, 1)] |
|
|
|
def optimize_parameters(self, current_iter): |
|
loss_dict = OrderedDict() |
|
|
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = True |
|
self.optimizer_d.zero_grad() |
|
|
|
batch = self.real_img.size(0) |
|
noise = self.mixing_noise(batch, self.mixing_prob) |
|
fake_img, _ = self.net_g(noise) |
|
fake_pred = self.net_d(fake_img.detach()) |
|
|
|
real_pred = self.net_d(self.real_img) |
|
|
|
l_d = self.cri_gan(real_pred, True, is_disc=True) + self.cri_gan(fake_pred, False, is_disc=True) |
|
loss_dict['l_d'] = l_d |
|
|
|
|
|
loss_dict['real_score'] = real_pred.detach().mean() |
|
loss_dict['fake_score'] = fake_pred.detach().mean() |
|
l_d.backward() |
|
|
|
if current_iter % self.net_d_reg_every == 0: |
|
self.real_img.requires_grad = True |
|
real_pred = self.net_d(self.real_img) |
|
l_d_r1 = r1_penalty(real_pred, self.real_img) |
|
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0]) |
|
|
|
|
|
|
|
|
|
|
|
loss_dict['l_d_r1'] = l_d_r1.detach().mean() |
|
l_d_r1.backward() |
|
|
|
self.optimizer_d.step() |
|
|
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = False |
|
self.optimizer_g.zero_grad() |
|
|
|
noise = self.mixing_noise(batch, self.mixing_prob) |
|
fake_img, _ = self.net_g(noise) |
|
fake_pred = self.net_d(fake_img) |
|
|
|
|
|
l_g = self.cri_gan(fake_pred, True, is_disc=False) |
|
loss_dict['l_g'] = l_g |
|
l_g.backward() |
|
|
|
if current_iter % self.net_g_reg_every == 0: |
|
path_batch_size = max(1, batch // self.opt['train']['path_batch_shrink']) |
|
noise = self.mixing_noise(path_batch_size, self.mixing_prob) |
|
fake_img, latents = self.net_g(noise, return_latents=True) |
|
l_g_path, path_lengths, self.mean_path_length = g_path_regularize(fake_img, latents, self.mean_path_length) |
|
|
|
l_g_path = (self.path_reg_weight * self.net_g_reg_every * l_g_path + 0 * fake_img[0, 0, 0, 0]) |
|
|
|
l_g_path.backward() |
|
loss_dict['l_g_path'] = l_g_path.detach().mean() |
|
loss_dict['path_length'] = path_lengths |
|
|
|
self.optimizer_g.step() |
|
|
|
self.log_dict = self.reduce_loss_dict(loss_dict) |
|
|
|
|
|
self.model_ema(decay=0.5**(32 / (10 * 1000))) |
|
|
|
def test(self): |
|
with torch.no_grad(): |
|
self.net_g_ema.eval() |
|
self.output, _ = self.net_g_ema([self.fixed_sample]) |
|
|
|
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
if self.opt['rank'] == 0: |
|
self.nondist_validation(dataloader, current_iter, tb_logger, save_img) |
|
|
|
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
assert dataloader is None, 'Validation dataloader should be None.' |
|
self.test() |
|
result = tensor2img(self.output, min_max=(-1, 1)) |
|
if self.opt['is_train']: |
|
save_img_path = osp.join(self.opt['path']['visualization'], 'train', f'train_{current_iter}.png') |
|
else: |
|
save_img_path = osp.join(self.opt['path']['visualization'], 'test', f'test_{self.opt["name"]}.png') |
|
imwrite(result, save_img_path) |
|
|
|
result = (result / 255.).astype(np.float32) |
|
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) |
|
if tb_logger is not None: |
|
tb_logger.add_image('samples', result, global_step=current_iter, dataformats='HWC') |
|
|
|
def save(self, epoch, current_iter): |
|
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema']) |
|
self.save_network(self.net_d, 'net_d', current_iter) |
|
self.save_training_state(epoch, current_iter) |
|
|