|
import math |
|
import random |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu |
|
from basicsr.ops.upfirdn2d import upfirdn2d |
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
|
|
class NormStyleCode(nn.Module): |
|
|
|
def forward(self, x): |
|
"""Normalize the style codes. |
|
|
|
Args: |
|
x (Tensor): Style codes with shape (b, c). |
|
|
|
Returns: |
|
Tensor: Normalized tensor. |
|
""" |
|
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) |
|
|
|
|
|
def make_resample_kernel(k): |
|
"""Make resampling kernel for UpFirDn. |
|
|
|
Args: |
|
k (list[int]): A list indicating the 1D resample kernel magnitude. |
|
|
|
Returns: |
|
Tensor: 2D resampled kernel. |
|
""" |
|
k = torch.tensor(k, dtype=torch.float32) |
|
if k.ndim == 1: |
|
k = k[None, :] * k[:, None] |
|
|
|
k /= k.sum() |
|
return k |
|
|
|
|
|
class UpFirDnUpsample(nn.Module): |
|
"""Upsample, FIR filter, and downsample (upsampole version). |
|
|
|
References: |
|
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501 |
|
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501 |
|
|
|
Args: |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel |
|
magnitude. |
|
factor (int): Upsampling scale factor. Default: 2. |
|
""" |
|
|
|
def __init__(self, resample_kernel, factor=2): |
|
super(UpFirDnUpsample, self).__init__() |
|
self.kernel = make_resample_kernel(resample_kernel) * (factor**2) |
|
self.factor = factor |
|
|
|
pad = self.kernel.shape[0] - factor |
|
self.pad = ((pad + 1) // 2 + factor - 1, pad // 2) |
|
|
|
def forward(self, x): |
|
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad) |
|
return out |
|
|
|
def __repr__(self): |
|
return (f'{self.__class__.__name__}(factor={self.factor})') |
|
|
|
|
|
class UpFirDnDownsample(nn.Module): |
|
"""Upsample, FIR filter, and downsample (downsampole version). |
|
|
|
Args: |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel |
|
magnitude. |
|
factor (int): Downsampling scale factor. Default: 2. |
|
""" |
|
|
|
def __init__(self, resample_kernel, factor=2): |
|
super(UpFirDnDownsample, self).__init__() |
|
self.kernel = make_resample_kernel(resample_kernel) |
|
self.factor = factor |
|
|
|
pad = self.kernel.shape[0] - factor |
|
self.pad = ((pad + 1) // 2, pad // 2) |
|
|
|
def forward(self, x): |
|
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad) |
|
return out |
|
|
|
def __repr__(self): |
|
return (f'{self.__class__.__name__}(factor={self.factor})') |
|
|
|
|
|
class UpFirDnSmooth(nn.Module): |
|
"""Upsample, FIR filter, and downsample (smooth version). |
|
|
|
Args: |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel |
|
magnitude. |
|
upsample_factor (int): Upsampling scale factor. Default: 1. |
|
downsample_factor (int): Downsampling scale factor. Default: 1. |
|
kernel_size (int): Kernel size: Default: 1. |
|
""" |
|
|
|
def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1): |
|
super(UpFirDnSmooth, self).__init__() |
|
self.upsample_factor = upsample_factor |
|
self.downsample_factor = downsample_factor |
|
self.kernel = make_resample_kernel(resample_kernel) |
|
if upsample_factor > 1: |
|
self.kernel = self.kernel * (upsample_factor**2) |
|
|
|
if upsample_factor > 1: |
|
pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1) |
|
self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1) |
|
elif downsample_factor > 1: |
|
pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1) |
|
self.pad = ((pad + 1) // 2, pad // 2) |
|
else: |
|
raise NotImplementedError |
|
|
|
def forward(self, x): |
|
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad) |
|
return out |
|
|
|
def __repr__(self): |
|
return (f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}' |
|
f', downsample_factor={self.downsample_factor})') |
|
|
|
|
|
class EqualLinear(nn.Module): |
|
"""Equalized Linear as StyleGAN2. |
|
|
|
Args: |
|
in_channels (int): Size of each sample. |
|
out_channels (int): Size of each output sample. |
|
bias (bool): If set to ``False``, the layer will not learn an additive |
|
bias. Default: ``True``. |
|
bias_init_val (float): Bias initialized value. Default: 0. |
|
lr_mul (float): Learning rate multiplier. Default: 1. |
|
activation (None | str): The activation after ``linear`` operation. |
|
Supported: 'fused_lrelu', None. Default: None. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None): |
|
super(EqualLinear, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.lr_mul = lr_mul |
|
self.activation = activation |
|
if self.activation not in ['fused_lrelu', None]: |
|
raise ValueError(f'Wrong activation value in EqualLinear: {activation}' |
|
"Supported ones are: ['fused_lrelu', None].") |
|
self.scale = (1 / math.sqrt(in_channels)) * lr_mul |
|
|
|
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul)) |
|
if bias: |
|
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) |
|
else: |
|
self.register_parameter('bias', None) |
|
|
|
def forward(self, x): |
|
if self.bias is None: |
|
bias = None |
|
else: |
|
bias = self.bias * self.lr_mul |
|
if self.activation == 'fused_lrelu': |
|
out = F.linear(x, self.weight * self.scale) |
|
out = fused_leaky_relu(out, bias) |
|
else: |
|
out = F.linear(x, self.weight * self.scale, bias=bias) |
|
return out |
|
|
|
def __repr__(self): |
|
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' |
|
f'out_channels={self.out_channels}, bias={self.bias is not None})') |
|
|
|
|
|
class ModulatedConv2d(nn.Module): |
|
"""Modulated Conv2d used in StyleGAN2. |
|
|
|
There is no bias in ModulatedConv2d. |
|
|
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
kernel_size (int): Size of the convolving kernel. |
|
num_style_feat (int): Channel number of style features. |
|
demodulate (bool): Whether to demodulate in the conv layer. |
|
Default: True. |
|
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. |
|
Default: None. |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel |
|
magnitude. Default: (1, 3, 3, 1). |
|
eps (float): A value added to the denominator for numerical stability. |
|
Default: 1e-8. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
num_style_feat, |
|
demodulate=True, |
|
sample_mode=None, |
|
resample_kernel=(1, 3, 3, 1), |
|
eps=1e-8): |
|
super(ModulatedConv2d, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.demodulate = demodulate |
|
self.sample_mode = sample_mode |
|
self.eps = eps |
|
|
|
if self.sample_mode == 'upsample': |
|
self.smooth = UpFirDnSmooth( |
|
resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size) |
|
elif self.sample_mode == 'downsample': |
|
self.smooth = UpFirDnSmooth( |
|
resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size) |
|
elif self.sample_mode is None: |
|
pass |
|
else: |
|
raise ValueError(f'Wrong sample mode {self.sample_mode}, ' |
|
"supported ones are ['upsample', 'downsample', None].") |
|
|
|
self.scale = 1 / math.sqrt(in_channels * kernel_size**2) |
|
|
|
self.modulation = EqualLinear( |
|
num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None) |
|
|
|
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)) |
|
self.padding = kernel_size // 2 |
|
|
|
def forward(self, x, style): |
|
"""Forward function. |
|
|
|
Args: |
|
x (Tensor): Tensor with shape (b, c, h, w). |
|
style (Tensor): Tensor with shape (b, num_style_feat). |
|
|
|
Returns: |
|
Tensor: Modulated tensor after convolution. |
|
""" |
|
b, c, h, w = x.shape |
|
|
|
style = self.modulation(style).view(b, 1, c, 1, 1) |
|
|
|
weight = self.scale * self.weight * style |
|
|
|
if self.demodulate: |
|
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) |
|
weight = weight * demod.view(b, self.out_channels, 1, 1, 1) |
|
|
|
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size) |
|
|
|
if self.sample_mode == 'upsample': |
|
x = x.view(1, b * c, h, w) |
|
weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size) |
|
weight = weight.transpose(1, 2).reshape(b * c, self.out_channels, self.kernel_size, self.kernel_size) |
|
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b) |
|
out = out.view(b, self.out_channels, *out.shape[2:4]) |
|
out = self.smooth(out) |
|
elif self.sample_mode == 'downsample': |
|
x = self.smooth(x) |
|
x = x.view(1, b * c, *x.shape[2:4]) |
|
out = F.conv2d(x, weight, padding=0, stride=2, groups=b) |
|
out = out.view(b, self.out_channels, *out.shape[2:4]) |
|
else: |
|
x = x.view(1, b * c, h, w) |
|
|
|
out = F.conv2d(x, weight, padding=self.padding, groups=b) |
|
out = out.view(b, self.out_channels, *out.shape[2:4]) |
|
|
|
return out |
|
|
|
def __repr__(self): |
|
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' |
|
f'out_channels={self.out_channels}, ' |
|
f'kernel_size={self.kernel_size}, ' |
|
f'demodulate={self.demodulate}, sample_mode={self.sample_mode})') |
|
|
|
|
|
class StyleConv(nn.Module): |
|
"""Style conv. |
|
|
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
kernel_size (int): Size of the convolving kernel. |
|
num_style_feat (int): Channel number of style features. |
|
demodulate (bool): Whether demodulate in the conv layer. Default: True. |
|
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. |
|
Default: None. |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel |
|
magnitude. Default: (1, 3, 3, 1). |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
num_style_feat, |
|
demodulate=True, |
|
sample_mode=None, |
|
resample_kernel=(1, 3, 3, 1)): |
|
super(StyleConv, self).__init__() |
|
self.modulated_conv = ModulatedConv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
num_style_feat, |
|
demodulate=demodulate, |
|
sample_mode=sample_mode, |
|
resample_kernel=resample_kernel) |
|
self.weight = nn.Parameter(torch.zeros(1)) |
|
self.activate = FusedLeakyReLU(out_channels) |
|
|
|
def forward(self, x, style, noise=None): |
|
|
|
out = self.modulated_conv(x, style) |
|
|
|
if noise is None: |
|
b, _, h, w = out.shape |
|
noise = out.new_empty(b, 1, h, w).normal_() |
|
out = out + self.weight * noise |
|
|
|
out = self.activate(out) |
|
return out |
|
|
|
|
|
class ToRGB(nn.Module): |
|
"""To RGB from features. |
|
|
|
Args: |
|
in_channels (int): Channel number of input. |
|
num_style_feat (int): Channel number of style features. |
|
upsample (bool): Whether to upsample. Default: True. |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel |
|
magnitude. Default: (1, 3, 3, 1). |
|
""" |
|
|
|
def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)): |
|
super(ToRGB, self).__init__() |
|
if upsample: |
|
self.upsample = UpFirDnUpsample(resample_kernel, factor=2) |
|
else: |
|
self.upsample = None |
|
self.modulated_conv = ModulatedConv2d( |
|
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None) |
|
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) |
|
|
|
def forward(self, x, style, skip=None): |
|
"""Forward function. |
|
|
|
Args: |
|
x (Tensor): Feature tensor with shape (b, c, h, w). |
|
style (Tensor): Tensor with shape (b, num_style_feat). |
|
skip (Tensor): Base/skip tensor. Default: None. |
|
|
|
Returns: |
|
Tensor: RGB images. |
|
""" |
|
out = self.modulated_conv(x, style) |
|
out = out + self.bias |
|
if skip is not None: |
|
if self.upsample: |
|
skip = self.upsample(skip) |
|
out = out + skip |
|
return out |
|
|
|
|
|
class ConstantInput(nn.Module): |
|
"""Constant input. |
|
|
|
Args: |
|
num_channel (int): Channel number of constant input. |
|
size (int): Spatial size of constant input. |
|
""" |
|
|
|
def __init__(self, num_channel, size): |
|
super(ConstantInput, self).__init__() |
|
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) |
|
|
|
def forward(self, batch): |
|
out = self.weight.repeat(batch, 1, 1, 1) |
|
return out |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class StyleGAN2Generator(nn.Module): |
|
"""StyleGAN2 Generator. |
|
|
|
Args: |
|
out_size (int): The spatial size of outputs. |
|
num_style_feat (int): Channel number of style features. Default: 512. |
|
num_mlp (int): Layer number of MLP style layers. Default: 8. |
|
channel_multiplier (int): Channel multiplier for large networks of |
|
StyleGAN2. Default: 2. |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel |
|
magnitude. A cross production will be applied to extent 1D resample |
|
kernel to 2D resample kernel. Default: (1, 3, 3, 1). |
|
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. |
|
narrow (float): Narrow ratio for channels. Default: 1.0. |
|
""" |
|
|
|
def __init__(self, |
|
out_size, |
|
num_style_feat=512, |
|
num_mlp=8, |
|
channel_multiplier=2, |
|
resample_kernel=(1, 3, 3, 1), |
|
lr_mlp=0.01, |
|
narrow=1): |
|
super(StyleGAN2Generator, self).__init__() |
|
|
|
self.num_style_feat = num_style_feat |
|
style_mlp_layers = [NormStyleCode()] |
|
for i in range(num_mlp): |
|
style_mlp_layers.append( |
|
EqualLinear( |
|
num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp, |
|
activation='fused_lrelu')) |
|
self.style_mlp = nn.Sequential(*style_mlp_layers) |
|
|
|
channels = { |
|
'4': int(512 * narrow), |
|
'8': int(512 * narrow), |
|
'16': int(512 * narrow), |
|
'32': int(512 * narrow), |
|
'64': int(256 * channel_multiplier * narrow), |
|
'128': int(128 * channel_multiplier * narrow), |
|
'256': int(64 * channel_multiplier * narrow), |
|
'512': int(32 * channel_multiplier * narrow), |
|
'1024': int(16 * channel_multiplier * narrow) |
|
} |
|
self.channels = channels |
|
|
|
self.constant_input = ConstantInput(channels['4'], size=4) |
|
self.style_conv1 = StyleConv( |
|
channels['4'], |
|
channels['4'], |
|
kernel_size=3, |
|
num_style_feat=num_style_feat, |
|
demodulate=True, |
|
sample_mode=None, |
|
resample_kernel=resample_kernel) |
|
self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, resample_kernel=resample_kernel) |
|
|
|
self.log_size = int(math.log(out_size, 2)) |
|
self.num_layers = (self.log_size - 2) * 2 + 1 |
|
self.num_latent = self.log_size * 2 - 2 |
|
|
|
self.style_convs = nn.ModuleList() |
|
self.to_rgbs = nn.ModuleList() |
|
self.noises = nn.Module() |
|
|
|
in_channels = channels['4'] |
|
|
|
for layer_idx in range(self.num_layers): |
|
resolution = 2**((layer_idx + 5) // 2) |
|
shape = [1, 1, resolution, resolution] |
|
self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape)) |
|
|
|
for i in range(3, self.log_size + 1): |
|
out_channels = channels[f'{2**i}'] |
|
self.style_convs.append( |
|
StyleConv( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
num_style_feat=num_style_feat, |
|
demodulate=True, |
|
sample_mode='upsample', |
|
resample_kernel=resample_kernel, |
|
)) |
|
self.style_convs.append( |
|
StyleConv( |
|
out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
num_style_feat=num_style_feat, |
|
demodulate=True, |
|
sample_mode=None, |
|
resample_kernel=resample_kernel)) |
|
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True, resample_kernel=resample_kernel)) |
|
in_channels = out_channels |
|
|
|
def make_noise(self): |
|
"""Make noise for noise injection.""" |
|
device = self.constant_input.weight.device |
|
noises = [torch.randn(1, 1, 4, 4, device=device)] |
|
|
|
for i in range(3, self.log_size + 1): |
|
for _ in range(2): |
|
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) |
|
|
|
return noises |
|
|
|
def get_latent(self, x): |
|
return self.style_mlp(x) |
|
|
|
def mean_latent(self, num_latent): |
|
latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device) |
|
latent = self.style_mlp(latent_in).mean(0, keepdim=True) |
|
return latent |
|
|
|
def forward(self, |
|
styles, |
|
input_is_latent=False, |
|
noise=None, |
|
randomize_noise=True, |
|
truncation=1, |
|
truncation_latent=None, |
|
inject_index=None, |
|
return_latents=False): |
|
"""Forward function for StyleGAN2Generator. |
|
|
|
Args: |
|
styles (list[Tensor]): Sample codes of styles. |
|
input_is_latent (bool): Whether input is latent style. |
|
Default: False. |
|
noise (Tensor | None): Input noise or None. Default: None. |
|
randomize_noise (bool): Randomize noise, used when 'noise' is |
|
False. Default: True. |
|
truncation (float): TODO. Default: 1. |
|
truncation_latent (Tensor | None): TODO. Default: None. |
|
inject_index (int | None): The injection index for mixing noise. |
|
Default: None. |
|
return_latents (bool): Whether to return style latents. |
|
Default: False. |
|
""" |
|
|
|
if not input_is_latent: |
|
styles = [self.style_mlp(s) for s in styles] |
|
|
|
if noise is None: |
|
if randomize_noise: |
|
noise = [None] * self.num_layers |
|
else: |
|
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)] |
|
|
|
if truncation < 1: |
|
style_truncation = [] |
|
for style in styles: |
|
style_truncation.append(truncation_latent + truncation * (style - truncation_latent)) |
|
styles = style_truncation |
|
|
|
if len(styles) == 1: |
|
inject_index = self.num_latent |
|
|
|
if styles[0].ndim < 3: |
|
|
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
else: |
|
latent = styles[0] |
|
elif len(styles) == 2: |
|
if inject_index is None: |
|
inject_index = random.randint(1, self.num_latent - 1) |
|
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) |
|
latent = torch.cat([latent1, latent2], 1) |
|
|
|
|
|
out = self.constant_input(latent.shape[0]) |
|
out = self.style_conv1(out, latent[:, 0], noise=noise[0]) |
|
skip = self.to_rgb1(out, latent[:, 1]) |
|
|
|
i = 1 |
|
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2], |
|
noise[2::2], self.to_rgbs): |
|
out = conv1(out, latent[:, i], noise=noise1) |
|
out = conv2(out, latent[:, i + 1], noise=noise2) |
|
skip = to_rgb(out, latent[:, i + 2], skip) |
|
i += 2 |
|
|
|
image = skip |
|
|
|
if return_latents: |
|
return image, latent |
|
else: |
|
return image, None |
|
|
|
|
|
class ScaledLeakyReLU(nn.Module): |
|
"""Scaled LeakyReLU. |
|
|
|
Args: |
|
negative_slope (float): Negative slope. Default: 0.2. |
|
""" |
|
|
|
def __init__(self, negative_slope=0.2): |
|
super(ScaledLeakyReLU, self).__init__() |
|
self.negative_slope = negative_slope |
|
|
|
def forward(self, x): |
|
out = F.leaky_relu(x, negative_slope=self.negative_slope) |
|
return out * math.sqrt(2) |
|
|
|
|
|
class EqualConv2d(nn.Module): |
|
"""Equalized Linear as StyleGAN2. |
|
|
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
kernel_size (int): Size of the convolving kernel. |
|
stride (int): Stride of the convolution. Default: 1 |
|
padding (int): Zero-padding added to both sides of the input. |
|
Default: 0. |
|
bias (bool): If ``True``, adds a learnable bias to the output. |
|
Default: ``True``. |
|
bias_init_val (float): Bias initialized value. Default: 0. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0): |
|
super(EqualConv2d, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
self.scale = 1 / math.sqrt(in_channels * kernel_size**2) |
|
|
|
self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size)) |
|
if bias: |
|
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) |
|
else: |
|
self.register_parameter('bias', None) |
|
|
|
def forward(self, x): |
|
out = F.conv2d( |
|
x, |
|
self.weight * self.scale, |
|
bias=self.bias, |
|
stride=self.stride, |
|
padding=self.padding, |
|
) |
|
|
|
return out |
|
|
|
def __repr__(self): |
|
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' |
|
f'out_channels={self.out_channels}, ' |
|
f'kernel_size={self.kernel_size},' |
|
f' stride={self.stride}, padding={self.padding}, ' |
|
f'bias={self.bias is not None})') |
|
|
|
|
|
class ConvLayer(nn.Sequential): |
|
"""Conv Layer used in StyleGAN2 Discriminator. |
|
|
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
kernel_size (int): Kernel size. |
|
downsample (bool): Whether downsample by a factor of 2. |
|
Default: False. |
|
resample_kernel (list[int]): A list indicating the 1D resample |
|
kernel magnitude. A cross production will be applied to |
|
extent 1D resample kernel to 2D resample kernel. |
|
Default: (1, 3, 3, 1). |
|
bias (bool): Whether with bias. Default: True. |
|
activate (bool): Whether use activateion. Default: True. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
downsample=False, |
|
resample_kernel=(1, 3, 3, 1), |
|
bias=True, |
|
activate=True): |
|
layers = [] |
|
|
|
if downsample: |
|
layers.append( |
|
UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size)) |
|
stride = 2 |
|
self.padding = 0 |
|
else: |
|
stride = 1 |
|
self.padding = kernel_size // 2 |
|
|
|
layers.append( |
|
EqualConv2d( |
|
in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias |
|
and not activate)) |
|
|
|
if activate: |
|
if bias: |
|
layers.append(FusedLeakyReLU(out_channels)) |
|
else: |
|
layers.append(ScaledLeakyReLU(0.2)) |
|
|
|
super(ConvLayer, self).__init__(*layers) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
"""Residual block used in StyleGAN2 Discriminator. |
|
|
|
Args: |
|
in_channels (int): Channel number of the input. |
|
out_channels (int): Channel number of the output. |
|
resample_kernel (list[int]): A list indicating the 1D resample |
|
kernel magnitude. A cross production will be applied to |
|
extent 1D resample kernel to 2D resample kernel. |
|
Default: (1, 3, 3, 1). |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)): |
|
super(ResBlock, self).__init__() |
|
|
|
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True) |
|
self.conv2 = ConvLayer( |
|
in_channels, out_channels, 3, downsample=True, resample_kernel=resample_kernel, bias=True, activate=True) |
|
self.skip = ConvLayer( |
|
in_channels, out_channels, 1, downsample=True, resample_kernel=resample_kernel, bias=False, activate=False) |
|
|
|
def forward(self, x): |
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
skip = self.skip(x) |
|
out = (out + skip) / math.sqrt(2) |
|
return out |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class StyleGAN2Discriminator(nn.Module): |
|
"""StyleGAN2 Discriminator. |
|
|
|
Args: |
|
out_size (int): The spatial size of outputs. |
|
channel_multiplier (int): Channel multiplier for large networks of |
|
StyleGAN2. Default: 2. |
|
resample_kernel (list[int]): A list indicating the 1D resample kernel |
|
magnitude. A cross production will be applied to extent 1D resample |
|
kernel to 2D resample kernel. Default: (1, 3, 3, 1). |
|
stddev_group (int): For group stddev statistics. Default: 4. |
|
narrow (float): Narrow ratio for channels. Default: 1.0. |
|
""" |
|
|
|
def __init__(self, out_size, channel_multiplier=2, resample_kernel=(1, 3, 3, 1), stddev_group=4, narrow=1): |
|
super(StyleGAN2Discriminator, self).__init__() |
|
|
|
channels = { |
|
'4': int(512 * narrow), |
|
'8': int(512 * narrow), |
|
'16': int(512 * narrow), |
|
'32': int(512 * narrow), |
|
'64': int(256 * channel_multiplier * narrow), |
|
'128': int(128 * channel_multiplier * narrow), |
|
'256': int(64 * channel_multiplier * narrow), |
|
'512': int(32 * channel_multiplier * narrow), |
|
'1024': int(16 * channel_multiplier * narrow) |
|
} |
|
|
|
log_size = int(math.log(out_size, 2)) |
|
|
|
conv_body = [ConvLayer(3, channels[f'{out_size}'], 1, bias=True, activate=True)] |
|
|
|
in_channels = channels[f'{out_size}'] |
|
for i in range(log_size, 2, -1): |
|
out_channels = channels[f'{2**(i - 1)}'] |
|
conv_body.append(ResBlock(in_channels, out_channels, resample_kernel)) |
|
in_channels = out_channels |
|
self.conv_body = nn.Sequential(*conv_body) |
|
|
|
self.final_conv = ConvLayer(in_channels + 1, channels['4'], 3, bias=True, activate=True) |
|
self.final_linear = nn.Sequential( |
|
EqualLinear( |
|
channels['4'] * 4 * 4, channels['4'], bias=True, bias_init_val=0, lr_mul=1, activation='fused_lrelu'), |
|
EqualLinear(channels['4'], 1, bias=True, bias_init_val=0, lr_mul=1, activation=None), |
|
) |
|
self.stddev_group = stddev_group |
|
self.stddev_feat = 1 |
|
|
|
def forward(self, x): |
|
out = self.conv_body(x) |
|
|
|
b, c, h, w = out.shape |
|
|
|
group = min(b, self.stddev_group) |
|
stddev = out.view(group, -1, self.stddev_feat, c // self.stddev_feat, h, w) |
|
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) |
|
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) |
|
stddev = stddev.repeat(group, 1, h, w) |
|
out = torch.cat([out, stddev], 1) |
|
|
|
out = self.final_conv(out) |
|
out = out.view(b, -1) |
|
out = self.final_linear(out) |
|
|
|
return out |
|
|