|
import re |
|
|
|
|
|
def read_data_from_tensorboard(log_path, tag): |
|
"""Get raw data (steps and values) from tensorboard events. |
|
|
|
Args: |
|
log_path (str): Path to the tensorboard log. |
|
tag (str): tag to be read. |
|
""" |
|
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator |
|
|
|
|
|
event_acc = EventAccumulator(log_path) |
|
event_acc.Reload() |
|
scalar_list = event_acc.Tags()['scalars'] |
|
print('tag list: ', scalar_list) |
|
steps = [int(s.step) for s in event_acc.Scalars(tag)] |
|
values = [s.value for s in event_acc.Scalars(tag)] |
|
return steps, values |
|
|
|
|
|
def read_data_from_txt_2v(path, pattern, step_one=False): |
|
"""Read data from txt with 2 returned values (usually [step, value]). |
|
|
|
Args: |
|
path (str): path to the txt file. |
|
pattern (str): re (regular expression) pattern. |
|
step_one (bool): add 1 to steps. Default: False. |
|
""" |
|
with open(path) as f: |
|
lines = f.readlines() |
|
lines = [line.strip() for line in lines] |
|
steps = [] |
|
values = [] |
|
|
|
pattern = re.compile(pattern) |
|
for line in lines: |
|
match = pattern.match(line) |
|
if match: |
|
steps.append(int(match.group(1))) |
|
values.append(float(match.group(2))) |
|
if step_one: |
|
steps = [v + 1 for v in steps] |
|
return steps, values |
|
|
|
|
|
def read_data_from_txt_1v(path, pattern): |
|
"""Read data from txt with 1 returned values. |
|
|
|
Args: |
|
path (str): path to the txt file. |
|
pattern (str): re (regular expression) pattern. |
|
""" |
|
with open(path) as f: |
|
lines = f.readlines() |
|
lines = [line.strip() for line in lines] |
|
data = [] |
|
|
|
pattern = re.compile(pattern) |
|
for line in lines: |
|
match = pattern.match(line) |
|
if match: |
|
data.append(float(match.group(1))) |
|
return data |
|
|
|
|
|
def smooth_data(values, smooth_weight): |
|
""" Smooth data using 1st-order IIR low-pass filter (what tensorflow does). |
|
|
|
Reference: https://github.com/tensorflow/tensorboard/blob/f801ebf1f9fbfe2baee1ddd65714d0bccc640fb1/tensorboard/plugins/scalar/vz_line_chart/vz-line-chart.ts#L704 # noqa: E501 |
|
|
|
Args: |
|
values (list): A list of values to be smoothed. |
|
smooth_weight (float): Smooth weight. |
|
""" |
|
values_sm = [] |
|
last_sm_value = values[0] |
|
for value in values: |
|
value_sm = last_sm_value * smooth_weight + (1 - smooth_weight) * value |
|
values_sm.append(value_sm) |
|
last_sm_value = value_sm |
|
return values_sm |
|
|