File size: 13,125 Bytes
d1372c9 d08f2a4 d1372c9 d08f2a4 d1372c9 d08f2a4 d1372c9 d08f2a4 d1372c9 d08f2a4 d1372c9 d08f2a4 d1372c9 d08f2a4 d1372c9 d08f2a4 d1372c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# -*- coding: utf-8
# Reinaldo Chaves ([email protected])
# Este projeto implementa um sistema de Recuperação de Informações Aumentada por Geração (RAG) conversacional
# usando Streamlit, LangChain, e modelos de linguagem de grande escala - para entrevistar conteúdo de URLs
# Geração de respostas usando o modelo llama-3.2-90b-text-preview da Meta
# Embeddings de texto usando o modelo all-MiniLM-L6-v2 do Hugging Face
##
import streamlit as st
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_groq import ChatGroq
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
import os
import requests
from bs4 import BeautifulSoup
from langchain_core.documents import Document
import time
from tenacity import retry, wait_exponential, stop_after_attempt, retry_if_exception_type
from groq.error import RateLimitError
# Configurar o tema para dark
st.set_page_config(page_title="RAG Q&A Conversacional", layout="wide", initial_sidebar_state="expanded", page_icon="🤖", menu_items=None)
# Aplicar o tema dark com CSS
st.markdown("""
<style>
/* Estilo global */
.stApp, [data-testid="stAppViewContainer"], [data-testid="stHeader"] {
background-color: #0e1117 !important;
color: #fafafa !important;
}
/* Sidebar */
[data-testid="stSidebar"], [data-testid="stSidebarNav"] {
background-color: #262730 !important;
color: #fafafa !important;
}
[data-testid="stSidebar"] .stMarkdown, [data-testid="stSidebarNav"] .stMarkdown {
color: #fafafa !important;
}
/* Botões */
.stButton > button {
color: #4F8BF9 !important;
background-color: #262730 !important;
border-radius: 20px !important;
height: 3em !important;
width: 200px !important;
}
/* Inputs de texto */
.stTextInput > div > div > input {
color: #fafafa !important;
background-color: #262730 !important;
}
/* Rótulos de input */
.stTextInput > label, [data-baseweb="label"] {
color: #fafafa !important;
font-size: 1rem !important;
}
/* Garantindo visibilidade do texto em todo o app */
.stApp > header + div, [data-testid="stAppViewContainer"] > div {
color: #fafafa !important;
}
/* Forçando cor de texto para elementos específicos */
div[class*="css"] {
color: #fafafa !important;
}
/* Ajuste para elementos de entrada */
[data-baseweb="base-input"] {
background-color: #262730 !important;
}
[data-baseweb="base-input"] input {
color: #fafafa !important;
}
/* Ajuste para o fundo do conteúdo principal */
[data-testid="stAppViewContainer"] > section[data-testid="stSidebar"] + div {
background-color: #0e1117 !important;
}
/* Forçando cor de fundo escura para todo o corpo da página */
body {
background-color: #0e1117 !important;
}
/* Ajustando cores para elementos de seleção e opções */
.stSelectbox, .stMultiSelect {
color: #fafafa !important;
background-color: #262730 !important;
}
/* Ajustando cores para expansores */
.streamlit-expanderHeader {
background-color: #262730 !important;
color: #fafafa !important;
}
/* Ajustando cores para caixas de código */
.stCodeBlock {
background-color: #1e1e1e !important;
}
/* Ajustando cores para tabelas */
.stTable {
color: #fafafa !important;
background-color: #262730 !important;
}
/* Estilo para o título principal */
.yellow-title {
color: yellow !important;
font-size: 2.5rem !important;
font-weight: bold !important;
}
/* Estilo para o título da sidebar */
.orange-title {
color: orange !important;
font-size: 1.5rem !important;
font-weight: bold !important;
}
</style>
""", unsafe_allow_html=True)
# Sidebar com orientações
st.sidebar.markdown("<h2 class='orange-title'>Orientações</h2>", unsafe_allow_html=True)
st.sidebar.markdown("""
* Se encontrar erros de processamento, reinicie com F5.
* Para recomeçar uma nova sessão pressione F5.
**Obtenção de chaves de API:**
* Você pode fazer uma conta no Groq Cloud e obter uma chave de API [aqui](https://console.groq.com/login)
* Você pode fazer uma conta no Hugging Face e obter o token de API Hugging Face [aqui](https://huggingface.co./docs/hub/security-tokens)
**Atenção:** O conteúdo das URLs que você compartilhar com o modelo de IA generativa pode ser usado pelo LLM para treinar o sistema. Portanto, evite compartilhar URLs que contenham:
1. Dados bancários e financeiros
2. Dados de sua própria empresa
3. Informações pessoais
4. Informações de propriedade intelectual
5. Conteúdos autorais
E não use IA para escrever um texto inteiro! O auxílio é melhor para gerar resumos, filtrar informações ou auxiliar a entender contextos - que depois devem ser checados. Inteligência Artificial comete erros (alucinações, viés, baixa qualidade, problemas éticos)!
Este projeto não se responsabiliza pelos conteúdos criados a partir deste site.
**Sobre este app**
Este aplicativo foi desenvolvido por Reinaldo Chaves. Para mais informações, contribuições e feedback, visite o [repositório do projeto no GitHub](https://github.com/reichaves/entrevista_url_llama3).
""")
st.markdown("<h1 class='yellow-title'>Chatbot com modelos opensource - entrevista URLs ✏️</h1>", unsafe_allow_html=True)
st.write("Insira uma URL e converse com o conteúdo dela - aqui é usado o modelo de LLM llama-3.2-90b-text-preview e a plataforma de embeddings é all-MiniLM-L6-v2")
# Solicitar as chaves de API
groq_api_key = st.text_input("Insira sua chave de API Groq:", type="password")
huggingface_api_token = st.text_input("Insira seu token de API Hugging Face:", type="password")
# Retry decorator for handling rate limit errors
@retry(
retry=retry_if_exception_type(RateLimitError),
wait=wait_exponential(multiplier=1, min=4, max=60),
stop=stop_after_attempt(5)
)
def rate_limited_llm_call(llm, **kwargs):
return llm(**kwargs)
if groq_api_key and huggingface_api_token:
# Configurar o token da API do Hugging Face
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_api_token
# Inicializar o modelo de linguagem e embeddings
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama-3.2-90b-text-preview", temperature=0)
rate_limited_llm = lambda **kwargs: rate_limited_llm_call(llm, **kwargs)
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
session_id = st.text_input("Session ID", value="default_session")
if 'store' not in st.session_state:
st.session_state.store = {}
url = st.text_input("Insira a URL para análise:")
if url:
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Extract text from the webpage
text = soup.get_text(separator='\n', strip=True)
# Limit the text to a certain number of characters (e.g., 50,000)
max_chars = 50000
if len(text) > max_chars:
text = text[:max_chars]
st.warning(f"The webpage content was truncated to {max_chars} characters due to length.")
# Create a Document object
document = Document(page_content=text, metadata={"source": url})
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500) # Reduced chunk size
splits = text_splitter.split_documents([document])
# Create FAISS vector store
vectorstore = FAISS.from_documents(splits, embeddings)
st.success(f"Processed {len(splits)} document chunks from the URL.")
retriever = vectorstore.as_retriever()
contextualize_q_system_prompt = (
"Given a chat history and the latest user question "
"which might reference context in the chat history, "
"formulate a standalone question which can be understood "
"without the chat history. Do NOT answer the question, "
"just reformulate it if needed and otherwise return it as is."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages([
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
])
history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)
system_prompt = (
"Você é um assistente especializado em analisar conteúdo de páginas web. "
"Sempre coloque no final das respostas: 'Todas as informações devem ser checadas com a(s) fonte(s) original(ais)'"
"Responda em Português do Brasil a menos que seja pedido outro idioma"
"Se você não sabe a resposta, diga que não sabe"
"Siga estas diretrizes:\n\n"
"1. Explique os passos de forma simples e mantenha as respostas concisas.\n"
"2. Inclua links para ferramentas, pesquisas e páginas da Web citadas.\n"
"3. Ao resumir passagens, escreva em nível universitário.\n"
"4. Divida tópicos em partes menores e fáceis de entender quando relevante.\n"
"5. Seja claro, breve, ordenado e direto nas respostas.\n"
"6. Evite opiniões e mantenha-se neutro.\n"
"7. Se não souber a resposta, admita que não sabe.\n\n"
"Ao analisar o conteúdo da página web, considere:\n"
"- O tema principal da página\n"
"- A estrutura e organização do conteúdo\n"
"- Informações relevantes e pontos-chave\n"
"- Qualquer data ou informação temporal relevante\n"
"- A fonte da informação e sua credibilidade\n\n"
"Use o seguinte contexto para responder à pergunta: {context}\n\n"
"Sempre termine as respostas com: 'Todas as informações precisam ser checadas com as fontes das informações'."
)
qa_prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
])
# Modify the conversational_rag_chain to use the rate_limited_llm
question_answer_chain = create_stuff_documents_chain(rate_limited_llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
def get_session_history(session: str) -> BaseChatMessageHistory:
if session not in st.session_state.store:
st.session_state.store[session] = ChatMessageHistory()
return st.session_state.store[session]
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain, get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer"
)
user_input = st.text_input("Sua pergunta:")
if user_input:
with st.spinner("Processando sua pergunta..."):
session_history = get_session_history(session_id)
response = conversational_rag_chain.invoke(
{"input": user_input},
config={"configurable": {"session_id": session_id}},
)
st.write("Assistente:", response['answer'])
with st.expander("Ver histórico do chat"):
for message in session_history.messages:
st.write(f"**{message.type}:** {message.content}")
except requests.RequestException as e:
st.error(f"Erro ao acessar a URL: {str(e)}")
except RateLimitError as e:
st.error(f"Limite de taxa excedido para o modelo LLM. Tente novamente em alguns instantes. Erro: {str(e)}")
except Exception as e:
st.error(f"Ocorreu um erro inesperado: {str(e)}")
else:
st.warning("Por favor, insira tanto a chave da API do Groq quanto o token da API do Hugging Face.")
|