# Quick Start Guide 🚀 Welcome to the Crawl4AI Quickstart Guide! In this tutorial, we'll walk you through the basic usage of Crawl4AI, covering everything from initial setup to advanced features like chunking and extraction strategies, using asynchronous programming. Let's dive in! 🌟 --- ## Getting Started 🛠️ Set up your environment with `BrowserConfig` and create an `AsyncWebCrawler` instance. ```python import asyncio from crawl4ai import AsyncWebCrawler from crawl4ai.async_configs import BrowserConfig async def main(): browser_config = BrowserConfig(verbose=True) async with AsyncWebCrawler(config=browser_config) as crawler: # Add your crawling logic here pass if __name__ == "__main__": asyncio.run(main()) ``` --- ### Basic Usage Provide a URL and let Crawl4AI do the work! ```python from crawl4ai.async_configs import CrawlerRunConfig async def main(): browser_config = BrowserConfig(verbose=True) crawl_config = CrawlerRunConfig(url="https://www.nbcnews.com/business") async with AsyncWebCrawler(config=browser_config) as crawler: result = await crawler.arun(config=crawl_config) print(f"Basic crawl result: {result.markdown[:500]}") # Print first 500 characters if __name__ == "__main__": asyncio.run(main()) ``` --- ### Taking Screenshots 📸 Capture and save webpage screenshots with `CrawlerRunConfig`: ```python from crawl4ai.async_configs import CacheMode async def capture_and_save_screenshot(url: str, output_path: str): browser_config = BrowserConfig(verbose=True) crawl_config = CrawlerRunConfig( url=url, screenshot=True, cache_mode=CacheMode.BYPASS ) async with AsyncWebCrawler(config=browser_config) as crawler: result = await crawler.arun(config=crawl_config) if result.success and result.screenshot: import base64 screenshot_data = base64.b64decode(result.screenshot) with open(output_path, 'wb') as f: f.write(screenshot_data) print(f"Screenshot saved successfully to {output_path}") else: print("Failed to capture screenshot") ``` --- ### Browser Selection 🌐 Choose from multiple browser engines using `BrowserConfig`: ```python from crawl4ai.async_configs import BrowserConfig # Use Firefox firefox_config = BrowserConfig(browser_type="firefox", verbose=True, headless=True) async with AsyncWebCrawler(config=firefox_config) as crawler: result = await crawler.arun(config=CrawlerRunConfig(url="https://www.example.com")) # Use WebKit webkit_config = BrowserConfig(browser_type="webkit", verbose=True, headless=True) async with AsyncWebCrawler(config=webkit_config) as crawler: result = await crawler.arun(config=CrawlerRunConfig(url="https://www.example.com")) # Use Chromium (default) chromium_config = BrowserConfig(verbose=True, headless=True) async with AsyncWebCrawler(config=chromium_config) as crawler: result = await crawler.arun(config=CrawlerRunConfig(url="https://www.example.com")) ``` --- ### User Simulation 🎭 Simulate real user behavior to bypass detection: ```python from crawl4ai.async_configs import BrowserConfig, CrawlerRunConfig browser_config = BrowserConfig(verbose=True, headless=True) crawl_config = CrawlerRunConfig( url="YOUR-URL-HERE", cache_mode=CacheMode.BYPASS, simulate_user=True, # Random mouse movements and clicks override_navigator=True # Makes the browser appear like a real user ) async with AsyncWebCrawler(config=browser_config) as crawler: result = await crawler.arun(config=crawl_config) ``` --- ### Understanding Parameters 🧠 Explore caching and forcing fresh crawls: ```python async def main(): browser_config = BrowserConfig(verbose=True) async with AsyncWebCrawler(config=browser_config) as crawler: # First crawl (uses cache) result1 = await crawler.arun(config=CrawlerRunConfig(url="https://www.nbcnews.com/business")) print(f"First crawl result: {result1.markdown[:100]}...") # Force fresh crawl result2 = await crawler.arun( config=CrawlerRunConfig(url="https://www.nbcnews.com/business", cache_mode=CacheMode.BYPASS) ) print(f"Second crawl result: {result2.markdown[:100]}...") if __name__ == "__main__": asyncio.run(main()) ``` --- ### Adding a Chunking Strategy 🧩 Split content into chunks using `RegexChunking`: ```python from crawl4ai.chunking_strategy import RegexChunking async def main(): browser_config = BrowserConfig(verbose=True) crawl_config = CrawlerRunConfig( url="https://www.nbcnews.com/business", chunking_strategy=RegexChunking(patterns=["\n\n"]) ) async with AsyncWebCrawler(config=browser_config) as crawler: result = await crawler.arun(config=crawl_config) print(f"RegexChunking result: {result.extracted_content[:200]}...") if __name__ == "__main__": asyncio.run(main()) ``` --- ### Advanced Features and Configurations For advanced examples (LLM strategies, knowledge graphs, pagination handling), ensure all code aligns with the `BrowserConfig` and `CrawlerRunConfig` pattern shown above.