# Docker Deployment Crawl4AI provides official Docker images for easy deployment and scalability. This guide covers installation, configuration, and usage of Crawl4AI in Docker environments. ## Quick Start πŸš€ Pull and run the basic version: ```bash # Basic run without security docker pull unclecode/crawl4ai:basic docker run -p 11235:11235 unclecode/crawl4ai:basic # Run with API security enabled docker run -p 11235:11235 -e CRAWL4AI_API_TOKEN=your_secret_token unclecode/crawl4ai:basic ``` ## Running with Docker Compose 🐳 ### Use Docker Compose (From Local Dockerfile or Docker Hub) Crawl4AI provides flexibility to use Docker Compose for managing your containerized services. You can either build the image locally from the provided `Dockerfile` or use the pre-built image from Docker Hub. ### **Option 1: Using Docker Compose to Build Locally** If you want to build the image locally, use the provided `docker-compose.local.yml` file. ```bash docker-compose -f docker-compose.local.yml up -d ``` This will: 1. Build the Docker image from the provided `Dockerfile`. 2. Start the container and expose it on `http://localhost:11235`. --- ### **Option 2: Using Docker Compose with Pre-Built Image from Hub** If you prefer using the pre-built image on Docker Hub, use the `docker-compose.hub.yml` file. ```bash docker-compose -f docker-compose.hub.yml up -d ``` This will: 1. Pull the pre-built image `unclecode/crawl4ai:basic` (or `all`, depending on your configuration). 2. Start the container and expose it on `http://localhost:11235`. --- ### **Stopping the Running Services** To stop the services started via Docker Compose, you can use: ```bash docker-compose -f docker-compose.local.yml down # OR docker-compose -f docker-compose.hub.yml down ``` If the containers don’t stop and the application is still running, check the running containers: ```bash docker ps ``` Find the `CONTAINER ID` of the running service and stop it forcefully: ```bash docker stop ``` --- ### **Debugging with Docker Compose** - **Check Logs**: To view the container logs: ```bash docker-compose -f docker-compose.local.yml logs -f ``` - **Remove Orphaned Containers**: If the service is still running unexpectedly: ```bash docker-compose -f docker-compose.local.yml down --remove-orphans ``` - **Manually Remove Network**: If the network is still in use: ```bash docker network ls docker network rm crawl4ai_default ``` --- ### Why Use Docker Compose? Docker Compose is the recommended way to deploy Crawl4AI because: 1. It simplifies multi-container setups. 2. Allows you to define environment variables, resources, and ports in a single file. 3. Makes it easier to switch between local development and production-ready images. For example, your `docker-compose.yml` could include API keys, token settings, and memory limits, making deployment quick and consistent. ## API Security πŸ”’ ### Understanding CRAWL4AI_API_TOKEN The `CRAWL4AI_API_TOKEN` provides optional security for your Crawl4AI instance: - If `CRAWL4AI_API_TOKEN` is set: All API endpoints (except `/health`) require authentication - If `CRAWL4AI_API_TOKEN` is not set: The API is publicly accessible ```bash # Secured Instance docker run -p 11235:11235 -e CRAWL4AI_API_TOKEN=your_secret_token unclecode/crawl4ai:all # Unsecured Instance docker run -p 11235:11235 unclecode/crawl4ai:all ``` ### Making API Calls For secured instances, include the token in all requests: ```python import requests # Setup headers if token is being used api_token = "your_secret_token" # Same token set in CRAWL4AI_API_TOKEN headers = {"Authorization": f"Bearer {api_token}"} if api_token else {} # Making authenticated requests response = requests.post( "http://localhost:11235/crawl", headers=headers, json={ "urls": "https://example.com", "priority": 10 } ) # Checking task status task_id = response.json()["task_id"] status = requests.get( f"http://localhost:11235/task/{task_id}", headers=headers ) ``` ### Using with Docker Compose In your `docker-compose.yml`: ```yaml services: crawl4ai: image: unclecode/crawl4ai:all environment: - CRAWL4AI_API_TOKEN=${CRAWL4AI_API_TOKEN:-} # Optional # ... other configuration ``` Then either: 1. Set in `.env` file: ```env CRAWL4AI_API_TOKEN=your_secret_token ``` 2. Or set via command line: ```bash CRAWL4AI_API_TOKEN=your_secret_token docker-compose up ``` > **Security Note**: If you enable the API token, make sure to keep it secure and never commit it to version control. The token will be required for all API endpoints except the health check endpoint (`/health`). ## Configuration Options πŸ”§ ### Environment Variables You can configure the service using environment variables: ```bash # Basic configuration docker run -p 11235:11235 \ -e MAX_CONCURRENT_TASKS=5 \ unclecode/crawl4ai:all # With security and LLM support docker run -p 11235:11235 \ -e CRAWL4AI_API_TOKEN=your_secret_token \ -e OPENAI_API_KEY=sk-... \ -e ANTHROPIC_API_KEY=sk-ant-... \ unclecode/crawl4ai:all ``` ### Using Docker Compose (Recommended) 🐳 Create a `docker-compose.yml`: ```yaml version: '3.8' services: crawl4ai: image: unclecode/crawl4ai:all ports: - "11235:11235" environment: - CRAWL4AI_API_TOKEN=${CRAWL4AI_API_TOKEN:-} # Optional API security - MAX_CONCURRENT_TASKS=5 # LLM Provider Keys - OPENAI_API_KEY=${OPENAI_API_KEY:-} - ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY:-} volumes: - /dev/shm:/dev/shm deploy: resources: limits: memory: 4G reservations: memory: 1G ``` You can run it in two ways: 1. Using environment variables directly: ```bash CRAWL4AI_API_TOKEN=secret123 OPENAI_API_KEY=sk-... docker-compose up ``` 2. Using a `.env` file (recommended): Create a `.env` file in the same directory: ```env # API Security (optional) CRAWL4AI_API_TOKEN=your_secret_token # LLM Provider Keys OPENAI_API_KEY=sk-... ANTHROPIC_API_KEY=sk-ant-... # Other Configuration MAX_CONCURRENT_TASKS=5 ``` Then simply run: ```bash docker-compose up ``` ### Testing the Deployment πŸ§ͺ ```python import requests # For unsecured instances def test_unsecured(): # Health check health = requests.get("http://localhost:11235/health") print("Health check:", health.json()) # Basic crawl response = requests.post( "http://localhost:11235/crawl", json={ "urls": "https://www.nbcnews.com/business", "priority": 10 } ) task_id = response.json()["task_id"] print("Task ID:", task_id) # For secured instances def test_secured(api_token): headers = {"Authorization": f"Bearer {api_token}"} # Basic crawl with authentication response = requests.post( "http://localhost:11235/crawl", headers=headers, json={ "urls": "https://www.nbcnews.com/business", "priority": 10 } ) task_id = response.json()["task_id"] print("Task ID:", task_id) ``` ### LLM Extraction Example πŸ€– When you've configured your LLM provider keys (via environment variables or `.env`), you can use LLM extraction: ```python request = { "urls": "https://example.com", "extraction_config": { "type": "llm", "params": { "provider": "openai/gpt-4", "instruction": "Extract main topics from the page" } } } # Make the request (add headers if using API security) response = requests.post("http://localhost:11235/crawl", json=request) ``` > **Note**: Remember to add `.env` to your `.gitignore` to keep your API keys secure! ## Usage Examples πŸ“ ### Basic Crawling ```python request = { "urls": "https://www.nbcnews.com/business", "priority": 10 } response = requests.post("http://localhost:11235/crawl", json=request) task_id = response.json()["task_id"] # Get results result = requests.get(f"http://localhost:11235/task/{task_id}") ``` ### Structured Data Extraction ```python schema = { "name": "Crypto Prices", "baseSelector": ".cds-tableRow-t45thuk", "fields": [ { "name": "crypto", "selector": "td:nth-child(1) h2", "type": "text", }, { "name": "price", "selector": "td:nth-child(2)", "type": "text", } ], } request = { "urls": "https://www.coinbase.com/explore", "extraction_config": { "type": "json_css", "params": {"schema": schema} } } ``` ### Dynamic Content Handling ```python request = { "urls": "https://www.nbcnews.com/business", "js_code": [ "const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();" ], "wait_for": "article.tease-card:nth-child(10)" } ``` ### AI-Powered Extraction (Full Version) ```python request = { "urls": "https://www.nbcnews.com/business", "extraction_config": { "type": "cosine", "params": { "semantic_filter": "business finance economy", "word_count_threshold": 10, "max_dist": 0.2, "top_k": 3 } } } ``` ## Platform-Specific Instructions πŸ’» ### macOS ```bash docker pull unclecode/crawl4ai:basic docker run -p 11235:11235 unclecode/crawl4ai:basic ``` ### Ubuntu ```bash # Basic version docker pull unclecode/crawl4ai:basic docker run -p 11235:11235 unclecode/crawl4ai:basic # With GPU support docker pull unclecode/crawl4ai:gpu docker run --gpus all -p 11235:11235 unclecode/crawl4ai:gpu ``` ### Windows (PowerShell) ```powershell docker pull unclecode/crawl4ai:basic docker run -p 11235:11235 unclecode/crawl4ai:basic ``` ## Testing πŸ§ͺ Save this as `test_docker.py`: ```python import requests import json import time import sys class Crawl4AiTester: def __init__(self, base_url: str = "http://localhost:11235"): self.base_url = base_url def submit_and_wait(self, request_data: dict, timeout: int = 300) -> dict: # Submit crawl job response = requests.post(f"{self.base_url}/crawl", json=request_data) task_id = response.json()["task_id"] print(f"Task ID: {task_id}") # Poll for result start_time = time.time() while True: if time.time() - start_time > timeout: raise TimeoutError(f"Task {task_id} timeout") result = requests.get(f"{self.base_url}/task/{task_id}") status = result.json() if status["status"] == "completed": return status time.sleep(2) def test_deployment(): tester = Crawl4AiTester() # Test basic crawl request = { "urls": "https://www.nbcnews.com/business", "priority": 10 } result = tester.submit_and_wait(request) print("Basic crawl successful!") print(f"Content length: {len(result['result']['markdown'])}") if __name__ == "__main__": test_deployment() ``` ## Advanced Configuration βš™οΈ ### Crawler Parameters The `crawler_params` field allows you to configure the browser instance and crawling behavior. Here are key parameters you can use: ```python request = { "urls": "https://example.com", "crawler_params": { # Browser Configuration "headless": True, # Run in headless mode "browser_type": "chromium", # chromium/firefox/webkit "user_agent": "custom-agent", # Custom user agent "proxy": "http://proxy:8080", # Proxy configuration # Performance & Behavior "page_timeout": 30000, # Page load timeout (ms) "verbose": True, # Enable detailed logging "semaphore_count": 5, # Concurrent request limit # Anti-Detection Features "simulate_user": True, # Simulate human behavior "magic": True, # Advanced anti-detection "override_navigator": True, # Override navigator properties # Session Management "user_data_dir": "./browser-data", # Browser profile location "use_managed_browser": True, # Use persistent browser } } ``` ### Extra Parameters The `extra` field allows passing additional parameters directly to the crawler's `arun` function: ```python request = { "urls": "https://example.com", "extra": { "word_count_threshold": 10, # Min words per block "only_text": True, # Extract only text "bypass_cache": True, # Force fresh crawl "process_iframes": True, # Include iframe content } } ``` ### Complete Examples 1. **Advanced News Crawling** ```python request = { "urls": "https://www.nbcnews.com/business", "crawler_params": { "headless": True, "page_timeout": 30000, "remove_overlay_elements": True # Remove popups }, "extra": { "word_count_threshold": 50, # Longer content blocks "bypass_cache": True # Fresh content }, "css_selector": ".article-body" } ``` 2. **Anti-Detection Configuration** ```python request = { "urls": "https://example.com", "crawler_params": { "simulate_user": True, "magic": True, "override_navigator": True, "user_agent": "Mozilla/5.0 ...", "headers": { "Accept-Language": "en-US,en;q=0.9" } } } ``` 3. **LLM Extraction with Custom Parameters** ```python request = { "urls": "https://openai.com/pricing", "extraction_config": { "type": "llm", "params": { "provider": "openai/gpt-4", "schema": pricing_schema } }, "crawler_params": { "verbose": True, "page_timeout": 60000 }, "extra": { "word_count_threshold": 1, "only_text": True } } ``` 4. **Session-Based Dynamic Content** ```python request = { "urls": "https://example.com", "crawler_params": { "session_id": "dynamic_session", "headless": False, "page_timeout": 60000 }, "js_code": ["window.scrollTo(0, document.body.scrollHeight);"], "wait_for": "js:() => document.querySelectorAll('.item').length > 10", "extra": { "delay_before_return_html": 2.0 } } ``` 5. **Screenshot with Custom Timing** ```python request = { "urls": "https://example.com", "screenshot": True, "crawler_params": { "headless": True, "screenshot_wait_for": ".main-content" }, "extra": { "delay_before_return_html": 3.0 } } ``` ### Parameter Reference Table | Category | Parameter | Type | Description | |----------|-----------|------|-------------| | Browser | headless | bool | Run browser in headless mode | | Browser | browser_type | str | Browser engine selection | | Browser | user_agent | str | Custom user agent string | | Network | proxy | str | Proxy server URL | | Network | headers | dict | Custom HTTP headers | | Timing | page_timeout | int | Page load timeout (ms) | | Timing | delay_before_return_html | float | Wait before capture | | Anti-Detection | simulate_user | bool | Human behavior simulation | | Anti-Detection | magic | bool | Advanced protection | | Session | session_id | str | Browser session ID | | Session | user_data_dir | str | Profile directory | | Content | word_count_threshold | int | Minimum words per block | | Content | only_text | bool | Text-only extraction | | Content | process_iframes | bool | Include iframe content | | Debug | verbose | bool | Detailed logging | | Debug | log_console | bool | Browser console logs | ## Troubleshooting πŸ” ### Common Issues 1. **Connection Refused** ``` Error: Connection refused at localhost:11235 ``` Solution: Ensure the container is running and ports are properly mapped. 2. **Resource Limits** ``` Error: No available slots ``` Solution: Increase MAX_CONCURRENT_TASKS or container resources. 3. **GPU Access** ``` Error: GPU not found ``` Solution: Ensure proper NVIDIA drivers and use `--gpus all` flag. ### Debug Mode Access container for debugging: ```bash docker run -it --entrypoint /bin/bash unclecode/crawl4ai:all ``` View container logs: ```bash docker logs [container_id] ``` ## Best Practices 🌟 1. **Resource Management** - Set appropriate memory and CPU limits - Monitor resource usage via health endpoint - Use basic version for simple crawling tasks 2. **Scaling** - Use multiple containers for high load - Implement proper load balancing - Monitor performance metrics 3. **Security** - Use environment variables for sensitive data - Implement proper network isolation - Regular security updates ## API Reference πŸ“š ### Health Check ```http GET /health ``` ### Submit Crawl Task ```http POST /crawl Content-Type: application/json { "urls": "string or array", "extraction_config": { "type": "basic|llm|cosine|json_css", "params": {} }, "priority": 1-10, "ttl": 3600 } ``` ### Get Task Status ```http GET /task/{task_id} ``` For more details, visit the [official documentation](https://crawl4ai.com/mkdocs/).