Crawl4AI / tests /test_docker.py
amaye15
test
03c0888
import requests
import json
import time
import sys
import base64
import os
from typing import Dict, Any
class Crawl4AiTester:
def __init__(self, base_url: str = "http://localhost:11235"):
self.base_url = base_url
def submit_and_wait(self, request_data: Dict[str, Any], timeout: int = 300) -> Dict[str, Any]:
# Submit crawl job
response = requests.post(f"{self.base_url}/crawl", json=request_data)
task_id = response.json()["task_id"]
print(f"Task ID: {task_id}")
# Poll for result
start_time = time.time()
while True:
if time.time() - start_time > timeout:
raise TimeoutError(f"Task {task_id} did not complete within {timeout} seconds")
result = requests.get(f"{self.base_url}/task/{task_id}")
status = result.json()
if status["status"] == "failed":
print("Task failed:", status.get("error"))
raise Exception(f"Task failed: {status.get('error')}")
if status["status"] == "completed":
return status
time.sleep(2)
def test_docker_deployment(version="basic"):
tester = Crawl4AiTester()
print(f"Testing Crawl4AI Docker {version} version")
# Health check with timeout and retry
max_retries = 5
for i in range(max_retries):
try:
health = requests.get(f"{tester.base_url}/health", timeout=10)
print("Health check:", health.json())
break
except requests.exceptions.RequestException as e:
if i == max_retries - 1:
print(f"Failed to connect after {max_retries} attempts")
sys.exit(1)
print(f"Waiting for service to start (attempt {i+1}/{max_retries})...")
time.sleep(5)
# Test cases based on version
test_basic_crawl(tester)
# if version in ["full", "transformer"]:
# test_cosine_extraction(tester)
# test_js_execution(tester)
# test_css_selector(tester)
# test_structured_extraction(tester)
# test_llm_extraction(tester)
# test_llm_with_ollama(tester)
# test_screenshot(tester)
def test_basic_crawl(tester: Crawl4AiTester):
print("\n=== Testing Basic Crawl ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
result = tester.submit_and_wait(request)
print(f"Basic crawl result length: {len(result['result']['markdown'])}")
assert result["result"]["success"]
assert len(result["result"]["markdown"]) > 0
def test_js_execution(tester: Crawl4AiTester):
print("\n=== Testing JS Execution ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 8,
"js_code": [
"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
],
"wait_for": "article.tease-card:nth-child(10)",
"crawler_params": {
"headless": True
}
}
result = tester.submit_and_wait(request)
print(f"JS execution result length: {len(result['result']['markdown'])}")
assert result["result"]["success"]
def test_css_selector(tester: Crawl4AiTester):
print("\n=== Testing CSS Selector ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 7,
"css_selector": ".wide-tease-item__description",
"crawler_params": {
"headless": True
},
"extra": {"word_count_threshold": 10}
}
result = tester.submit_and_wait(request)
print(f"CSS selector result length: {len(result['result']['markdown'])}")
assert result["result"]["success"]
def test_structured_extraction(tester: Crawl4AiTester):
print("\n=== Testing Structured Extraction ===")
schema = {
"name": "Coinbase Crypto Prices",
"baseSelector": ".cds-tableRow-t45thuk",
"fields": [
{
"name": "crypto",
"selector": "td:nth-child(1) h2",
"type": "text",
},
{
"name": "symbol",
"selector": "td:nth-child(1) p",
"type": "text",
},
{
"name": "price",
"selector": "td:nth-child(2)",
"type": "text",
}
],
}
request = {
"urls": "https://www.coinbase.com/explore",
"priority": 9,
"extraction_config": {
"type": "json_css",
"params": {
"schema": schema
}
}
}
result = tester.submit_and_wait(request)
extracted = json.loads(result["result"]["extracted_content"])
print(f"Extracted {len(extracted)} items")
print("Sample item:", json.dumps(extracted[0], indent=2))
assert result["result"]["success"]
assert len(extracted) > 0
def test_llm_extraction(tester: Crawl4AiTester):
print("\n=== Testing LLM Extraction ===")
schema = {
"type": "object",
"properties": {
"model_name": {
"type": "string",
"description": "Name of the OpenAI model."
},
"input_fee": {
"type": "string",
"description": "Fee for input token for the OpenAI model."
},
"output_fee": {
"type": "string",
"description": "Fee for output token for the OpenAI model."
}
},
"required": ["model_name", "input_fee", "output_fee"]
}
request = {
"urls": "https://openai.com/api/pricing",
"priority": 8,
"extraction_config": {
"type": "llm",
"params": {
"provider": "openai/gpt-4o-mini",
"api_token": os.getenv("OPENAI_API_KEY"),
"schema": schema,
"extraction_type": "schema",
"instruction": """From the crawled content, extract all mentioned model names along with their fees for input and output tokens."""
}
},
"crawler_params": {"word_count_threshold": 1}
}
try:
result = tester.submit_and_wait(request)
extracted = json.loads(result["result"]["extracted_content"])
print(f"Extracted {len(extracted)} model pricing entries")
print("Sample entry:", json.dumps(extracted[0], indent=2))
assert result["result"]["success"]
except Exception as e:
print(f"LLM extraction test failed (might be due to missing API key): {str(e)}")
def test_llm_with_ollama(tester: Crawl4AiTester):
print("\n=== Testing LLM with Ollama ===")
schema = {
"type": "object",
"properties": {
"article_title": {
"type": "string",
"description": "The main title of the news article"
},
"summary": {
"type": "string",
"description": "A brief summary of the article content"
},
"main_topics": {
"type": "array",
"items": {"type": "string"},
"description": "Main topics or themes discussed in the article"
}
}
}
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 8,
"extraction_config": {
"type": "llm",
"params": {
"provider": "ollama/llama2",
"schema": schema,
"extraction_type": "schema",
"instruction": "Extract the main article information including title, summary, and main topics."
}
},
"extra": {"word_count_threshold": 1},
"crawler_params": {"verbose": True}
}
try:
result = tester.submit_and_wait(request)
extracted = json.loads(result["result"]["extracted_content"])
print("Extracted content:", json.dumps(extracted, indent=2))
assert result["result"]["success"]
except Exception as e:
print(f"Ollama extraction test failed: {str(e)}")
def test_cosine_extraction(tester: Crawl4AiTester):
print("\n=== Testing Cosine Extraction ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 8,
"extraction_config": {
"type": "cosine",
"params": {
"semantic_filter": "business finance economy",
"word_count_threshold": 10,
"max_dist": 0.2,
"top_k": 3
}
}
}
try:
result = tester.submit_and_wait(request)
extracted = json.loads(result["result"]["extracted_content"])
print(f"Extracted {len(extracted)} text clusters")
print("First cluster tags:", extracted[0]["tags"])
assert result["result"]["success"]
except Exception as e:
print(f"Cosine extraction test failed: {str(e)}")
def test_screenshot(tester: Crawl4AiTester):
print("\n=== Testing Screenshot ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 5,
"screenshot": True,
"crawler_params": {
"headless": True
}
}
result = tester.submit_and_wait(request)
print("Screenshot captured:", bool(result["result"]["screenshot"]))
if result["result"]["screenshot"]:
# Save screenshot
screenshot_data = base64.b64decode(result["result"]["screenshot"])
with open("test_screenshot.jpg", "wb") as f:
f.write(screenshot_data)
print("Screenshot saved as test_screenshot.jpg")
assert result["result"]["success"]
if __name__ == "__main__":
version = sys.argv[1] if len(sys.argv) > 1 else "basic"
# version = "full"
test_docker_deployment(version)