Crawl4AI / crawl4ai /chunking_strategy.py
amaye15
test
03c0888
from abc import ABC, abstractmethod
import re
from collections import Counter
import string
from .model_loader import load_nltk_punkt
from .utils import *
# Define the abstract base class for chunking strategies
class ChunkingStrategy(ABC):
"""
Abstract base class for chunking strategies.
"""
@abstractmethod
def chunk(self, text: str) -> list:
"""
Abstract method to chunk the given text.
Args:
text (str): The text to chunk.
Returns:
list: A list of chunks.
"""
pass
# Create an identity chunking strategy f(x) = [x]
class IdentityChunking(ChunkingStrategy):
"""
Chunking strategy that returns the input text as a single chunk.
"""
def chunk(self, text: str) -> list:
return [text]
# Regex-based chunking
class RegexChunking(ChunkingStrategy):
"""
Chunking strategy that splits text based on regular expression patterns.
"""
def __init__(self, patterns=None, **kwargs):
"""
Initialize the RegexChunking object.
Args:
patterns (list): A list of regular expression patterns to split text.
"""
if patterns is None:
patterns = [r'\n\n'] # Default split pattern
self.patterns = patterns
def chunk(self, text: str) -> list:
paragraphs = [text]
for pattern in self.patterns:
new_paragraphs = []
for paragraph in paragraphs:
new_paragraphs.extend(re.split(pattern, paragraph))
paragraphs = new_paragraphs
return paragraphs
# NLP-based sentence chunking
class NlpSentenceChunking(ChunkingStrategy):
"""
Chunking strategy that splits text into sentences using NLTK's sentence tokenizer.
"""
def __init__(self, **kwargs):
"""
Initialize the NlpSentenceChunking object.
"""
load_nltk_punkt()
def chunk(self, text: str) -> list:
# Improved regex for sentence splitting
# sentence_endings = re.compile(
# r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<![A-Z][A-Z]\.)(?<![A-Za-z]\.)(?<=\.|\?|\!|\n)\s'
# )
# sentences = sentence_endings.split(text)
# sens = [sent.strip() for sent in sentences if sent]
from nltk.tokenize import sent_tokenize
sentences = sent_tokenize(text)
sens = [sent.strip() for sent in sentences]
return list(set(sens))
# Topic-based segmentation using TextTiling
class TopicSegmentationChunking(ChunkingStrategy):
"""
Chunking strategy that segments text into topics using NLTK's TextTilingTokenizer.
How it works:
1. Segment the text into topics using TextTilingTokenizer
2. Extract keywords for each topic segment
"""
def __init__(self, num_keywords=3, **kwargs):
"""
Initialize the TopicSegmentationChunking object.
Args:
num_keywords (int): The number of keywords to extract for each topic segment.
"""
import nltk as nl
self.tokenizer = nl.tokenize.TextTilingTokenizer()
self.num_keywords = num_keywords
def chunk(self, text: str) -> list:
# Use the TextTilingTokenizer to segment the text
segmented_topics = self.tokenizer.tokenize(text)
return segmented_topics
def extract_keywords(self, text: str) -> list:
# Tokenize and remove stopwords and punctuation
import nltk as nl
tokens = nl.toknize.word_tokenize(text)
tokens = [token.lower() for token in tokens if token not in nl.corpus.stopwords.words('english') and token not in string.punctuation]
# Calculate frequency distribution
freq_dist = Counter(tokens)
keywords = [word for word, freq in freq_dist.most_common(self.num_keywords)]
return keywords
def chunk_with_topics(self, text: str) -> list:
# Segment the text into topics
segments = self.chunk(text)
# Extract keywords for each topic segment
segments_with_topics = [(segment, self.extract_keywords(segment)) for segment in segments]
return segments_with_topics
# Fixed-length word chunks
class FixedLengthWordChunking(ChunkingStrategy):
"""
Chunking strategy that splits text into fixed-length word chunks.
How it works:
1. Split the text into words
2. Create chunks of fixed length
3. Return the list of chunks
"""
def __init__(self, chunk_size=100, **kwargs):
"""
Initialize the fixed-length word chunking strategy with the given chunk size.
Args:
chunk_size (int): The size of each chunk in words.
"""
self.chunk_size = chunk_size
def chunk(self, text: str) -> list:
words = text.split()
return [' '.join(words[i:i + self.chunk_size]) for i in range(0, len(words), self.chunk_size)]
# Sliding window chunking
class SlidingWindowChunking(ChunkingStrategy):
"""
Chunking strategy that splits text into overlapping word chunks.
How it works:
1. Split the text into words
2. Create chunks of fixed length
3. Return the list of chunks
"""
def __init__(self, window_size=100, step=50, **kwargs):
"""
Initialize the sliding window chunking strategy with the given window size and
step size.
Args:
window_size (int): The size of the sliding window in words.
step (int): The step size for sliding the window in words.
"""
self.window_size = window_size
self.step = step
def chunk(self, text: str) -> list:
words = text.split()
chunks = []
if len(words) <= self.window_size:
return [text]
for i in range(0, len(words) - self.window_size + 1, self.step):
chunk = ' '.join(words[i:i + self.window_size])
chunks.append(chunk)
# Handle the last chunk if it doesn't align perfectly
if i + self.window_size < len(words):
chunks.append(' '.join(words[-self.window_size:]))
return chunks
class OverlappingWindowChunking(ChunkingStrategy):
"""
Chunking strategy that splits text into overlapping word chunks.
How it works:
1. Split the text into words using whitespace
2. Create chunks of fixed length equal to the window size
3. Slide the window by the overlap size
4. Return the list of chunks
"""
def __init__(self, window_size=1000, overlap=100, **kwargs):
"""
Initialize the overlapping window chunking strategy with the given window size and
overlap size.
Args:
window_size (int): The size of the window in words.
overlap (int): The size of the overlap between consecutive chunks in words.
"""
self.window_size = window_size
self.overlap = overlap
def chunk(self, text: str) -> list:
words = text.split()
chunks = []
if len(words) <= self.window_size:
return [text]
start = 0
while start < len(words):
end = start + self.window_size
chunk = ' '.join(words[start:end])
chunks.append(chunk)
if end >= len(words):
break
start = end - self.overlap
return chunks