Spaces:
Running
Running
File size: 17,593 Bytes
03c0888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
# Docker Deployment
Crawl4AI provides official Docker images for easy deployment and scalability. This guide covers installation, configuration, and usage of Crawl4AI in Docker environments.
## Quick Start π
Pull and run the basic version:
```bash
# Basic run without security
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic
# Run with API security enabled
docker run -p 11235:11235 -e CRAWL4AI_API_TOKEN=your_secret_token unclecode/crawl4ai:basic
```
## Running with Docker Compose π³
### Use Docker Compose (From Local Dockerfile or Docker Hub)
Crawl4AI provides flexibility to use Docker Compose for managing your containerized services. You can either build the image locally from the provided `Dockerfile` or use the pre-built image from Docker Hub.
### **Option 1: Using Docker Compose to Build Locally**
If you want to build the image locally, use the provided `docker-compose.local.yml` file.
```bash
docker-compose -f docker-compose.local.yml up -d
```
This will:
1. Build the Docker image from the provided `Dockerfile`.
2. Start the container and expose it on `http://localhost:11235`.
---
### **Option 2: Using Docker Compose with Pre-Built Image from Hub**
If you prefer using the pre-built image on Docker Hub, use the `docker-compose.hub.yml` file.
```bash
docker-compose -f docker-compose.hub.yml up -d
```
This will:
1. Pull the pre-built image `unclecode/crawl4ai:basic` (or `all`, depending on your configuration).
2. Start the container and expose it on `http://localhost:11235`.
---
### **Stopping the Running Services**
To stop the services started via Docker Compose, you can use:
```bash
docker-compose -f docker-compose.local.yml down
# OR
docker-compose -f docker-compose.hub.yml down
```
If the containers donβt stop and the application is still running, check the running containers:
```bash
docker ps
```
Find the `CONTAINER ID` of the running service and stop it forcefully:
```bash
docker stop <CONTAINER_ID>
```
---
### **Debugging with Docker Compose**
- **Check Logs**: To view the container logs:
```bash
docker-compose -f docker-compose.local.yml logs -f
```
- **Remove Orphaned Containers**: If the service is still running unexpectedly:
```bash
docker-compose -f docker-compose.local.yml down --remove-orphans
```
- **Manually Remove Network**: If the network is still in use:
```bash
docker network ls
docker network rm crawl4ai_default
```
---
### Why Use Docker Compose?
Docker Compose is the recommended way to deploy Crawl4AI because:
1. It simplifies multi-container setups.
2. Allows you to define environment variables, resources, and ports in a single file.
3. Makes it easier to switch between local development and production-ready images.
For example, your `docker-compose.yml` could include API keys, token settings, and memory limits, making deployment quick and consistent.
## API Security π
### Understanding CRAWL4AI_API_TOKEN
The `CRAWL4AI_API_TOKEN` provides optional security for your Crawl4AI instance:
- If `CRAWL4AI_API_TOKEN` is set: All API endpoints (except `/health`) require authentication
- If `CRAWL4AI_API_TOKEN` is not set: The API is publicly accessible
```bash
# Secured Instance
docker run -p 11235:11235 -e CRAWL4AI_API_TOKEN=your_secret_token unclecode/crawl4ai:all
# Unsecured Instance
docker run -p 11235:11235 unclecode/crawl4ai:all
```
### Making API Calls
For secured instances, include the token in all requests:
```python
import requests
# Setup headers if token is being used
api_token = "your_secret_token" # Same token set in CRAWL4AI_API_TOKEN
headers = {"Authorization": f"Bearer {api_token}"} if api_token else {}
# Making authenticated requests
response = requests.post(
"http://localhost:11235/crawl",
headers=headers,
json={
"urls": "https://example.com",
"priority": 10
}
)
# Checking task status
task_id = response.json()["task_id"]
status = requests.get(
f"http://localhost:11235/task/{task_id}",
headers=headers
)
```
### Using with Docker Compose
In your `docker-compose.yml`:
```yaml
services:
crawl4ai:
image: unclecode/crawl4ai:all
environment:
- CRAWL4AI_API_TOKEN=${CRAWL4AI_API_TOKEN:-} # Optional
# ... other configuration
```
Then either:
1. Set in `.env` file:
```env
CRAWL4AI_API_TOKEN=your_secret_token
```
2. Or set via command line:
```bash
CRAWL4AI_API_TOKEN=your_secret_token docker-compose up
```
> **Security Note**: If you enable the API token, make sure to keep it secure and never commit it to version control. The token will be required for all API endpoints except the health check endpoint (`/health`).
## Configuration Options π§
### Environment Variables
You can configure the service using environment variables:
```bash
# Basic configuration
docker run -p 11235:11235 \
-e MAX_CONCURRENT_TASKS=5 \
unclecode/crawl4ai:all
# With security and LLM support
docker run -p 11235:11235 \
-e CRAWL4AI_API_TOKEN=your_secret_token \
-e OPENAI_API_KEY=sk-... \
-e ANTHROPIC_API_KEY=sk-ant-... \
unclecode/crawl4ai:all
```
### Using Docker Compose (Recommended) π³
Create a `docker-compose.yml`:
```yaml
version: '3.8'
services:
crawl4ai:
image: unclecode/crawl4ai:all
ports:
- "11235:11235"
environment:
- CRAWL4AI_API_TOKEN=${CRAWL4AI_API_TOKEN:-} # Optional API security
- MAX_CONCURRENT_TASKS=5
# LLM Provider Keys
- OPENAI_API_KEY=${OPENAI_API_KEY:-}
- ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY:-}
volumes:
- /dev/shm:/dev/shm
deploy:
resources:
limits:
memory: 4G
reservations:
memory: 1G
```
You can run it in two ways:
1. Using environment variables directly:
```bash
CRAWL4AI_API_TOKEN=secret123 OPENAI_API_KEY=sk-... docker-compose up
```
2. Using a `.env` file (recommended):
Create a `.env` file in the same directory:
```env
# API Security (optional)
CRAWL4AI_API_TOKEN=your_secret_token
# LLM Provider Keys
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
# Other Configuration
MAX_CONCURRENT_TASKS=5
```
Then simply run:
```bash
docker-compose up
```
### Testing the Deployment π§ͺ
```python
import requests
# For unsecured instances
def test_unsecured():
# Health check
health = requests.get("http://localhost:11235/health")
print("Health check:", health.json())
# Basic crawl
response = requests.post(
"http://localhost:11235/crawl",
json={
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
)
task_id = response.json()["task_id"]
print("Task ID:", task_id)
# For secured instances
def test_secured(api_token):
headers = {"Authorization": f"Bearer {api_token}"}
# Basic crawl with authentication
response = requests.post(
"http://localhost:11235/crawl",
headers=headers,
json={
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
)
task_id = response.json()["task_id"]
print("Task ID:", task_id)
```
### LLM Extraction Example π€
When you've configured your LLM provider keys (via environment variables or `.env`), you can use LLM extraction:
```python
request = {
"urls": "https://example.com",
"extraction_config": {
"type": "llm",
"params": {
"provider": "openai/gpt-4",
"instruction": "Extract main topics from the page"
}
}
}
# Make the request (add headers if using API security)
response = requests.post("http://localhost:11235/crawl", json=request)
```
> **Note**: Remember to add `.env` to your `.gitignore` to keep your API keys secure!
## Usage Examples π
### Basic Crawling
```python
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
response = requests.post("http://localhost:11235/crawl", json=request)
task_id = response.json()["task_id"]
# Get results
result = requests.get(f"http://localhost:11235/task/{task_id}")
```
### Structured Data Extraction
```python
schema = {
"name": "Crypto Prices",
"baseSelector": ".cds-tableRow-t45thuk",
"fields": [
{
"name": "crypto",
"selector": "td:nth-child(1) h2",
"type": "text",
},
{
"name": "price",
"selector": "td:nth-child(2)",
"type": "text",
}
],
}
request = {
"urls": "https://www.coinbase.com/explore",
"extraction_config": {
"type": "json_css",
"params": {"schema": schema}
}
}
```
### Dynamic Content Handling
```python
request = {
"urls": "https://www.nbcnews.com/business",
"js_code": [
"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
],
"wait_for": "article.tease-card:nth-child(10)"
}
```
### AI-Powered Extraction (Full Version)
```python
request = {
"urls": "https://www.nbcnews.com/business",
"extraction_config": {
"type": "cosine",
"params": {
"semantic_filter": "business finance economy",
"word_count_threshold": 10,
"max_dist": 0.2,
"top_k": 3
}
}
}
```
## Platform-Specific Instructions π»
### macOS
```bash
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic
```
### Ubuntu
```bash
# Basic version
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic
# With GPU support
docker pull unclecode/crawl4ai:gpu
docker run --gpus all -p 11235:11235 unclecode/crawl4ai:gpu
```
### Windows (PowerShell)
```powershell
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic
```
## Testing π§ͺ
Save this as `test_docker.py`:
```python
import requests
import json
import time
import sys
class Crawl4AiTester:
def __init__(self, base_url: str = "http://localhost:11235"):
self.base_url = base_url
def submit_and_wait(self, request_data: dict, timeout: int = 300) -> dict:
# Submit crawl job
response = requests.post(f"{self.base_url}/crawl", json=request_data)
task_id = response.json()["task_id"]
print(f"Task ID: {task_id}")
# Poll for result
start_time = time.time()
while True:
if time.time() - start_time > timeout:
raise TimeoutError(f"Task {task_id} timeout")
result = requests.get(f"{self.base_url}/task/{task_id}")
status = result.json()
if status["status"] == "completed":
return status
time.sleep(2)
def test_deployment():
tester = Crawl4AiTester()
# Test basic crawl
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
result = tester.submit_and_wait(request)
print("Basic crawl successful!")
print(f"Content length: {len(result['result']['markdown'])}")
if __name__ == "__main__":
test_deployment()
```
## Advanced Configuration βοΈ
### Crawler Parameters
The `crawler_params` field allows you to configure the browser instance and crawling behavior. Here are key parameters you can use:
```python
request = {
"urls": "https://example.com",
"crawler_params": {
# Browser Configuration
"headless": True, # Run in headless mode
"browser_type": "chromium", # chromium/firefox/webkit
"user_agent": "custom-agent", # Custom user agent
"proxy": "http://proxy:8080", # Proxy configuration
# Performance & Behavior
"page_timeout": 30000, # Page load timeout (ms)
"verbose": True, # Enable detailed logging
"semaphore_count": 5, # Concurrent request limit
# Anti-Detection Features
"simulate_user": True, # Simulate human behavior
"magic": True, # Advanced anti-detection
"override_navigator": True, # Override navigator properties
# Session Management
"user_data_dir": "./browser-data", # Browser profile location
"use_managed_browser": True, # Use persistent browser
}
}
```
### Extra Parameters
The `extra` field allows passing additional parameters directly to the crawler's `arun` function:
```python
request = {
"urls": "https://example.com",
"extra": {
"word_count_threshold": 10, # Min words per block
"only_text": True, # Extract only text
"bypass_cache": True, # Force fresh crawl
"process_iframes": True, # Include iframe content
}
}
```
### Complete Examples
1. **Advanced News Crawling**
```python
request = {
"urls": "https://www.nbcnews.com/business",
"crawler_params": {
"headless": True,
"page_timeout": 30000,
"remove_overlay_elements": True # Remove popups
},
"extra": {
"word_count_threshold": 50, # Longer content blocks
"bypass_cache": True # Fresh content
},
"css_selector": ".article-body"
}
```
2. **Anti-Detection Configuration**
```python
request = {
"urls": "https://example.com",
"crawler_params": {
"simulate_user": True,
"magic": True,
"override_navigator": True,
"user_agent": "Mozilla/5.0 ...",
"headers": {
"Accept-Language": "en-US,en;q=0.9"
}
}
}
```
3. **LLM Extraction with Custom Parameters**
```python
request = {
"urls": "https://openai.com/pricing",
"extraction_config": {
"type": "llm",
"params": {
"provider": "openai/gpt-4",
"schema": pricing_schema
}
},
"crawler_params": {
"verbose": True,
"page_timeout": 60000
},
"extra": {
"word_count_threshold": 1,
"only_text": True
}
}
```
4. **Session-Based Dynamic Content**
```python
request = {
"urls": "https://example.com",
"crawler_params": {
"session_id": "dynamic_session",
"headless": False,
"page_timeout": 60000
},
"js_code": ["window.scrollTo(0, document.body.scrollHeight);"],
"wait_for": "js:() => document.querySelectorAll('.item').length > 10",
"extra": {
"delay_before_return_html": 2.0
}
}
```
5. **Screenshot with Custom Timing**
```python
request = {
"urls": "https://example.com",
"screenshot": True,
"crawler_params": {
"headless": True,
"screenshot_wait_for": ".main-content"
},
"extra": {
"delay_before_return_html": 3.0
}
}
```
### Parameter Reference Table
| Category | Parameter | Type | Description |
|----------|-----------|------|-------------|
| Browser | headless | bool | Run browser in headless mode |
| Browser | browser_type | str | Browser engine selection |
| Browser | user_agent | str | Custom user agent string |
| Network | proxy | str | Proxy server URL |
| Network | headers | dict | Custom HTTP headers |
| Timing | page_timeout | int | Page load timeout (ms) |
| Timing | delay_before_return_html | float | Wait before capture |
| Anti-Detection | simulate_user | bool | Human behavior simulation |
| Anti-Detection | magic | bool | Advanced protection |
| Session | session_id | str | Browser session ID |
| Session | user_data_dir | str | Profile directory |
| Content | word_count_threshold | int | Minimum words per block |
| Content | only_text | bool | Text-only extraction |
| Content | process_iframes | bool | Include iframe content |
| Debug | verbose | bool | Detailed logging |
| Debug | log_console | bool | Browser console logs |
## Troubleshooting π
### Common Issues
1. **Connection Refused**
```
Error: Connection refused at localhost:11235
```
Solution: Ensure the container is running and ports are properly mapped.
2. **Resource Limits**
```
Error: No available slots
```
Solution: Increase MAX_CONCURRENT_TASKS or container resources.
3. **GPU Access**
```
Error: GPU not found
```
Solution: Ensure proper NVIDIA drivers and use `--gpus all` flag.
### Debug Mode
Access container for debugging:
```bash
docker run -it --entrypoint /bin/bash unclecode/crawl4ai:all
```
View container logs:
```bash
docker logs [container_id]
```
## Best Practices π
1. **Resource Management**
- Set appropriate memory and CPU limits
- Monitor resource usage via health endpoint
- Use basic version for simple crawling tasks
2. **Scaling**
- Use multiple containers for high load
- Implement proper load balancing
- Monitor performance metrics
3. **Security**
- Use environment variables for sensitive data
- Implement proper network isolation
- Regular security updates
## API Reference π
### Health Check
```http
GET /health
```
### Submit Crawl Task
```http
POST /crawl
Content-Type: application/json
{
"urls": "string or array",
"extraction_config": {
"type": "basic|llm|cosine|json_css",
"params": {}
},
"priority": 1-10,
"ttl": 3600
}
```
### Get Task Status
```http
GET /task/{task_id}
```
For more details, visit the [official documentation](https://crawl4ai.com/mkdocs/). |