Spaces:
Runtime error
Runtime error
File size: 6,227 Bytes
fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de 1aa6a1b 784e7de fdcf5d4 784e7de fdcf5d4 784e7de fdcf5d4 784e7de e9f7e38 784e7de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import subprocess
import threading
import gradio as gr
import websocket
import uuid
import json
import urllib.request
import urllib.parse
from PIL import Image
import io
# π Chapter 1: Install Necessary Packages π
def install_packages():
packages = [
"gradio",
"websocket-client",
"pillow"
]
for package in packages:
subprocess.check_call(["pip", "install", package])
# Use threading to run the installation in the background
install_thread = threading.Thread(target=install_packages)
install_thread.start()
install_thread.join()
# π Chapter 2: Generate Client ID π
client_id = str(uuid.uuid4())
# π Chapter 3: Queue Prompt Function π
def queue_prompt(prompt, server_address):
p = {"prompt": prompt, "client_id": client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request(f"http://{server_address}/prompt", data=data)
return json.loads(urllib.request.urlopen(req).read())
# π Chapter 4: Get Image Function π
def get_image(filename, subfolder, folder_type, server_address):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen(f"http://{server_address}/view?{url_values}") as response:
return response.read()
# π Chapter 5: Get History Function π
def get_history(prompt_id, server_address):
with urllib.request.urlopen(f"http://{server_address}/history/{prompt_id}") as response:
return json.loads(response.read())
# π Chapter 6: Get Images Function π
def get_images(ws, prompt, server_address):
prompt_id = queue_prompt(prompt, server_address)['prompt_id']
output_images = {}
current_node = ""
while True:
out = ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['prompt_id'] == prompt_id:
if data['node'] is None:
break
else:
current_node = data['node']
else:
if current_node == 'save_image_websocket_node':
images_output = output_images.get(current_node, [])
images_output.append(out[8:])
output_images[current_node] = images_output
return output_images
# π Chapter 7: Generate Image Function π
def generate_image(text_prompt, seed, server):
prompt_text = """
{
"3": {
"class_type": "KSampler",
"inputs": {
"cfg": 8,
"denoise": 1,
"latent_image": [
"5",
0
],
"model": [
"4",
0
],
"negative": [
"7",
0
],
"positive": [
"6",
0
],
"sampler_name": "euler",
"scheduler": "normal",
"seed": 8566257,
"steps": 8
}
},
"4": {
"class_type": "CheckpointLoaderSimple",
"inputs": {
"ckpt_name": "v1-5-pruned-emaonly.ckpt"
}
},
"5": {
"class_type": "EmptyLatentImage",
"inputs": {
"batch_size": 1,
"height": 512,
"width": 768
}
},
"6": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": "masterpiece best quality girl"
}
},
"7": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": "bad hands"
}
},
"8": {
"class_type": "VAEDecode",
"inputs": {
"samples": [
"3",
0
],
"vae": [
"4",
2
]
}
},
"save_image_websocket_node": {
"class_type": "SaveImageWebsocket",
"inputs": {
"images": [
"8",
0
]
}
}
}
"""
prompt = json.loads(prompt_text)
prompt["6"]["inputs"]["text"] = text_prompt
prompt["3"]["inputs"]["seed"] = seed
server_address = "3.14.144.23:8188" if server == "AWS Server" else "192.168.50.136:8188"
ws = websocket.WebSocket()
ws.connect(f"ws://{server_address}/ws?clientId={client_id}")
images = get_images(ws, prompt, server_address)
image = None
for node_id in images:
for image_data in images[node_id]:
image = Image.open(io.BytesIO(image_data))
break
if image:
break
return image
# π Chapter 8: Cancel Request Function π
def cancel_request():
return "Request Cancelled"
# π Chapter 9: Gradio Interface π
with gr.Blocks() as demo:
gr.Markdown("# Image Generation with Websockets API")
gr.Markdown("Generate images using a Websockets API and SaveImageWebsocket node.")
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(label="Text Prompt", value="masterpiece best quality man")
seed = gr.Number(label="Seed", value=5)
server = gr.Radio(label="Server", choices=["AWS Server", "Home Server"], value="AWS Server")
generate_button = gr.Button("Generate Image")
cancel_button = gr.Button("Cancel Request")
with gr.Column():
output_image = gr.Image(label="Generated Image")
generate_button.click(fn=generate_image, inputs=[text_prompt, seed, server], outputs=output_image)
cancel_button.click(fn=cancel_request, inputs=[], outputs=[])
demo.launch()
|