File size: 6,227 Bytes
fdcf5d4
 
784e7de
fdcf5d4
784e7de
 
 
 
 
 
 
fdcf5d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784e7de
 
fdcf5d4
784e7de
 
 
fdcf5d4
784e7de
 
fdcf5d4
784e7de
 
 
fdcf5d4
784e7de
 
fdcf5d4
784e7de
fdcf5d4
784e7de
 
fdcf5d4
784e7de
 
 
 
 
 
 
 
 
 
 
 
fdcf5d4
784e7de
 
 
 
 
 
 
 
 
 
fdcf5d4
784e7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aa6a1b
784e7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdcf5d4
784e7de
 
 
 
 
 
 
 
 
 
 
 
fdcf5d4
784e7de
 
 
fdcf5d4
784e7de
 
 
 
 
 
 
 
e9f7e38
784e7de
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import subprocess
import threading
import gradio as gr
import websocket
import uuid
import json
import urllib.request
import urllib.parse
from PIL import Image
import io

# πŸš€ Chapter 1: Install Necessary Packages πŸš€
def install_packages():
    packages = [
        "gradio",
        "websocket-client",
        "pillow"
    ]
    for package in packages:
        subprocess.check_call(["pip", "install", package])

# Use threading to run the installation in the background
install_thread = threading.Thread(target=install_packages)
install_thread.start()
install_thread.join()

# 🌟 Chapter 2: Generate Client ID 🌟
client_id = str(uuid.uuid4())

# 🌟 Chapter 3: Queue Prompt Function 🌟
def queue_prompt(prompt, server_address):
    p = {"prompt": prompt, "client_id": client_id}
    data = json.dumps(p).encode('utf-8')
    req = urllib.request.Request(f"http://{server_address}/prompt", data=data)
    return json.loads(urllib.request.urlopen(req).read())

# 🌟 Chapter 4: Get Image Function 🌟
def get_image(filename, subfolder, folder_type, server_address):
    data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
    url_values = urllib.parse.urlencode(data)
    with urllib.request.urlopen(f"http://{server_address}/view?{url_values}") as response:
        return response.read()

# 🌟 Chapter 5: Get History Function 🌟
def get_history(prompt_id, server_address):
    with urllib.request.urlopen(f"http://{server_address}/history/{prompt_id}") as response:
        return json.loads(response.read())

# 🌟 Chapter 6: Get Images Function 🌟
def get_images(ws, prompt, server_address):
    prompt_id = queue_prompt(prompt, server_address)['prompt_id']
    output_images = {}
    current_node = ""
    while True:
        out = ws.recv()
        if isinstance(out, str):
            message = json.loads(out)
            if message['type'] == 'executing':
                data = message['data']
                if data['prompt_id'] == prompt_id:
                    if data['node'] is None:
                        break
                    else:
                        current_node = data['node']
        else:
            if current_node == 'save_image_websocket_node':
                images_output = output_images.get(current_node, [])
                images_output.append(out[8:])
                output_images[current_node] = images_output

    return output_images

# 🌟 Chapter 7: Generate Image Function 🌟
def generate_image(text_prompt, seed, server):
    prompt_text = """
    {
        "3": {
            "class_type": "KSampler",
            "inputs": {
                "cfg": 8,
                "denoise": 1,
                "latent_image": [
                    "5",
                    0
                ],
                "model": [
                    "4",
                    0
                ],
                "negative": [
                    "7",
                    0
                ],
                "positive": [
                    "6",
                    0
                ],
                "sampler_name": "euler",
                "scheduler": "normal",
                "seed": 8566257,
                "steps": 8
            }
        },
        "4": {
            "class_type": "CheckpointLoaderSimple",
            "inputs": {
                "ckpt_name": "v1-5-pruned-emaonly.ckpt"
            }
        },
        "5": {
            "class_type": "EmptyLatentImage",
            "inputs": {
                "batch_size": 1,
                "height": 512,
                "width": 768
            }
        },
        "6": {
            "class_type": "CLIPTextEncode",
            "inputs": {
                "clip": [
                    "4",
                    1
                ],
                "text": "masterpiece best quality girl"
            }
        },
        "7": {
            "class_type": "CLIPTextEncode",
            "inputs": {
                "clip": [
                    "4",
                    1
                ],
                "text": "bad hands"
            }
        },
        "8": {
            "class_type": "VAEDecode",
            "inputs": {
                "samples": [
                    "3",
                    0
                ],
                "vae": [
                    "4",
                    2
                ]
            }
        },
        "save_image_websocket_node": {
            "class_type": "SaveImageWebsocket",
            "inputs": {
                "images": [
                    "8",
                    0
                ]
            }
        }
    }
    """

    prompt = json.loads(prompt_text)
    prompt["6"]["inputs"]["text"] = text_prompt
    prompt["3"]["inputs"]["seed"] = seed
    server_address = "3.14.144.23:8188" if server == "AWS Server" else "192.168.50.136:8188"
    ws = websocket.WebSocket()
    ws.connect(f"ws://{server_address}/ws?clientId={client_id}")
    images = get_images(ws, prompt, server_address)
    image = None

    for node_id in images:
        for image_data in images[node_id]:
            image = Image.open(io.BytesIO(image_data))
            break
        if image:
            break

    return image

# 🌟 Chapter 8: Cancel Request Function 🌟
def cancel_request():
    return "Request Cancelled"

# 🌟 Chapter 9: Gradio Interface 🌟
with gr.Blocks() as demo:
    gr.Markdown("# Image Generation with Websockets API")
    gr.Markdown("Generate images using a Websockets API and SaveImageWebsocket node.")
    
    with gr.Row():
        with gr.Column():
            text_prompt = gr.Textbox(label="Text Prompt", value="masterpiece best quality man")
            seed = gr.Number(label="Seed", value=5)
            server = gr.Radio(label="Server", choices=["AWS Server", "Home Server"], value="AWS Server")
            generate_button = gr.Button("Generate Image")
            cancel_button = gr.Button("Cancel Request")
        
        with gr.Column():
            output_image = gr.Image(label="Generated Image")
    
    generate_button.click(fn=generate_image, inputs=[text_prompt, seed, server], outputs=output_image)
    cancel_button.click(fn=cancel_request, inputs=[], outputs=[])

demo.launch()