Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
st.title("Building Generative AI Tool") | |
st.subheader("Converting Text to Speech") | |
text = st.text_input("Enter your text here...", value="") | |
# # Using model="suno/bark-small" | |
# pipe_t2a = pipeline("text-to-speech", model="suno/bark-small", device='cpu') # Use 'cpu' to avoid device recognition error | |
# # Perform text-to-speech conversion if text is provided | |
# if text: | |
# output = pipe_t2a(text) | |
# # Display the audio output | |
# st.audio(output["audio"], format="audio/wav", sample_rate=output["sampling_rate"]) | |
# facebook/fastspeech2-en-ljspeech | |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub | |
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface | |
# import IPython.display as ipd | |
models, cfg, task = load_model_ensemble_and_task_from_hf_hub( | |
"facebook/fastspeech2-en-ljspeech", | |
arg_overrides={"vocoder": "hifigan", "fp16": False} | |
) | |
model = models[0] | |
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg) | |
generator = task.build_generator([model], cfg) | |
# text = "Hello, this is a test run." | |
#ipd.Audio(wav, rate=rate) | |
if text: | |
sample = TTSHubInterface.get_model_input(task, text) | |
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample) | |
# Display the audio output | |
st.audio(wav, format="audio/wav", sample_rate=rate) | |