Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
|
|
|
|
|
|
3 |
|
4 |
-
get_completion = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def translate(input_text, source, target):
|
7 |
# source_readable = source
|
8 |
# if source == "Auto Detect" or source.startswith("Detected"):
|
@@ -20,14 +36,19 @@ def translate(input_text, source, target):
|
|
20 |
return "", f"Error: Translation direction {source_readable} to {target} is not supported by Helsinki Translation Models"
|
21 |
|
22 |
def summarize(input):
|
23 |
-
output =
|
24 |
summary_origin = output[0]['summary_text']
|
25 |
summary_translated = translate(summary_origin,'en','fr')
|
26 |
-
|
|
|
27 |
|
28 |
demo = gr.Interface(fn=summarize,
|
29 |
inputs=[gr.Textbox(label="Text to summarize", lines=6)],
|
30 |
-
outputs=[
|
|
|
|
|
|
|
|
|
31 |
title="Text summarization with distilbart-cnn",
|
32 |
description="Summarize any text using the `sshleifer/distilbart-cnn-12-6` model under the hood!",
|
33 |
examples=[
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, VitsModel, AutoTokenizer, set_seed
|
3 |
+
import torch
|
4 |
+
import uuid
|
5 |
+
import scipy.io.wavfile as wav
|
6 |
|
|
|
7 |
|
8 |
+
generate_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
9 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
10 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
11 |
+
|
12 |
+
def gen_speech(text):
|
13 |
+
set_seed(555) # Make it deterministic
|
14 |
+
input_text = tts_tokenizer(text, return_tensors="pt")
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = tts_model(**input_text)
|
17 |
+
waveform_np = outputs.waveform[0].cpu().numpy()
|
18 |
+
output_file = f"{str(uuid.uuid4())}.wav"
|
19 |
+
wav.write(output_file, rate=tts_model.config.sampling_rate, data=waveform_np)
|
20 |
+
return output_file
|
21 |
+
|
22 |
def translate(input_text, source, target):
|
23 |
# source_readable = source
|
24 |
# if source == "Auto Detect" or source.startswith("Detected"):
|
|
|
36 |
return "", f"Error: Translation direction {source_readable} to {target} is not supported by Helsinki Translation Models"
|
37 |
|
38 |
def summarize(input):
|
39 |
+
output = generate_summary(input)
|
40 |
summary_origin = output[0]['summary_text']
|
41 |
summary_translated = translate(summary_origin,'en','fr')
|
42 |
+
audio_output_filepath = gen_speech(summary_origin)
|
43 |
+
return summary_origin, summary_translated[0], audio_output_filepath
|
44 |
|
45 |
demo = gr.Interface(fn=summarize,
|
46 |
inputs=[gr.Textbox(label="Text to summarize", lines=6)],
|
47 |
+
outputs=[
|
48 |
+
gr.Textbox(label="Result", lines=3),
|
49 |
+
gr.Textbox(label="Translate Result", lines=3),
|
50 |
+
gr.Audio(type="filepath", label="Generated Speech")
|
51 |
+
],
|
52 |
title="Text summarization with distilbart-cnn",
|
53 |
description="Summarize any text using the `sshleifer/distilbart-cnn-12-6` model under the hood!",
|
54 |
examples=[
|