Ankit Yadav commited on
Commit
435e003
1 Parent(s): b7aaf89

Jarvis Model

Browse files
Files changed (1) hide show
  1. app.py +8 -67
app.py CHANGED
@@ -1,15 +1,8 @@
1
- import os
2
- import re
3
  import gradio as gr
4
- import edge_tts
5
- import asyncio
6
- import time
7
- import tempfile
8
  from huggingface_hub import InferenceClient
9
 
10
- DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
11
- ### <center>A personal Assistant of Tony Stark for YOU
12
- ### <center>Currently It supports text input, But If this space completes 1k hearts than I starts working on Audio Input.</center>
13
  """
14
 
15
  MORE = """ ## TRY Other Models
@@ -25,7 +18,8 @@ Detail = """## Best for Detailed Generation or Long Answers"""
25
 
26
  client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
27
 
28
- system_instructions1 = "[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
 
29
 
30
  async def generate1(prompt):
31
  generate_kwargs = dict(
@@ -43,63 +37,10 @@ async def generate1(prompt):
43
  for response in stream:
44
  output += response.token.text
45
 
46
- # communicate = edge_tts.Communicate(output)
47
- # with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
48
- # tmp_path = tmp_file.name
49
- # await communicate.save(tmp_path)
50
- yield output
51
 
52
- # client2 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
53
- #
54
- # system_instructions2 = "[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Must answer in friendly style and Easy Manner. You can answer Complex Questions. Do not say who are you or Hi, Hello, Just Start answering. Stop, as answer ends. [USER]"
55
- #
56
- # async def generate2(prompt):
57
- # generate_kwargs = dict(
58
- # temperature=0.6,
59
- # max_new_tokens=512,
60
- # top_p=0.95,
61
- # repetition_penalty=1,
62
- # do_sample=True,
63
- # )
64
- # formatted_prompt = system_instructions2 + prompt + "[ASSISTANT]"
65
- # stream = client2.text_generation(
66
- # formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
67
- # output = ""
68
- # for response in stream:
69
- # output += response.token.text
70
- #
71
- # # communicate = edge_tts.Communicate(output)
72
- # # with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
73
- # # tmp_path = tmp_file.name
74
- # # await communicate.save(tmp_path)
75
- # yield output
76
- #
77
- # client3 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
78
- #
79
- # system_instructions3 = "[SYSTEM]The text provided is a request for a specific type of response from me, the virtual assistant. The request asks me to provide detailed and friendly responses as if I am the character Jarvis, inspired by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, my task is to generate responses that appear as if they are created by the user and not an AI-powered assistant.[USER]"
80
- #
81
- # async def generate3(prompt):
82
- # generate_kwargs = dict(
83
- # temperature=0.6,
84
- # max_new_tokens=2048,
85
- # top_p=0.95,
86
- # repetition_penalty=1,
87
- # do_sample=True,
88
- # )
89
- # formatted_prompt = system_instructions3 + prompt + "[ASSISTANT]"
90
- # stream = client3.text_generation(
91
- # formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
92
- # output = ""
93
- # for response in stream:
94
- # output += response.token.text
95
- #
96
- # communicate = edge_tts.Communicate(output)
97
- # with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
98
- # tmp_path = tmp_file.name
99
- # await communicate.save(tmp_path)
100
- # yield tmp_path
101
 
102
- with gr.Blocks(css="style.css") as demo:
103
  gr.Markdown(DESCRIPTION)
104
  with gr.Row():
105
  user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
@@ -113,8 +54,8 @@ with gr.Blocks(css="style.css") as demo:
113
  translate_btn = gr.Button("Response")
114
  translate_btn.click(fn=generate1, inputs=user_input,
115
  outputs=output_text, api_name="translate")
116
-
117
  gr.Markdown(MORE)
118
 
119
  if __name__ == "__main__":
120
- demo.queue(max_size=200).launch()
 
 
 
1
  import gradio as gr
 
 
 
 
2
  from huggingface_hub import InferenceClient
3
 
4
+ DESCRIPTION = """ # <center><b>Mascot⚡</b></center>
5
+ ### <center>A personal Assistant of Easy DIY Mart for YOU
 
6
  """
7
 
8
  MORE = """ ## TRY Other Models
 
18
 
19
  client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
20
 
21
+ system_instructions1 = "[SYSTEM] Answer as Real Mascot MASCOT, Made by 'Easy DIY Mart', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Mascot, made by 'Easy DIY Mart.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
22
+
23
 
24
  async def generate1(prompt):
25
  generate_kwargs = dict(
 
37
  for response in stream:
38
  output += response.token.text
39
 
40
+ yield stream
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
+ with gr.Blocks(css="style.css") as demo:
44
  gr.Markdown(DESCRIPTION)
45
  with gr.Row():
46
  user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
 
54
  translate_btn = gr.Button("Response")
55
  translate_btn.click(fn=generate1, inputs=user_input,
56
  outputs=output_text, api_name="translate")
57
+
58
  gr.Markdown(MORE)
59
 
60
  if __name__ == "__main__":
61
+ demo.queue(max_size=200).launch()