Spaces:
Sleeping
Sleeping
File size: 6,184 Bytes
9c082ed 14d1708 9c082ed 2cb9163 9c082ed 8cdce23 9c082ed 78c829e 1530369 9c082ed 78c829e 9598589 9c082ed a7fcda8 9c082ed 78c829e 7632712 9c082ed a7fcda8 6e5ff9e a7fcda8 9c082ed 38eda8d 9c082ed f84d692 9c082ed 0f754dc 9c082ed 0f754dc 9c082ed f84d692 9c082ed f84d692 0f754dc 9c082ed f84d692 9c082ed 0f754dc 9c082ed 0f754dc 9c082ed 0f754dc 9c082ed 0f754dc 9c082ed 0f754dc 9c082ed 06507d6 9c082ed c5c21b3 a7fcda8 9c082ed 1b69af7 9c082ed 1530369 9c082ed 5bdf46a 9c082ed 1b69af7 8e9c9e5 9c082ed 83d750e 9c082ed d6b323a 9c082ed 0ea8f26 9c082ed 78c829e 9c082ed 0f754dc 9c082ed 0f754dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
## Setup
# Import the necessary Libraries
import os
import uuid
import joblib
import json
import gradio as gr
import pandas as pd
from huggingface_hub import InferenceClient,CommitScheduler
from pathlib import Path
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from openai import OpenAI
# Create Client
client = OpenAI(
base_url="https://api.endpoints.anyscale.com/v1",
api_key=os.environ['anyscale_api_key']
)
#model_name = 'mlabonne/NeuralHermes-2.5-Mistral-7B'
model_name = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
# Define the embedding model and the vectorstore
embedding_model_name = 'thenlper/gte-large'
embedding_model = SentenceTransformerEmbeddings(model_name=embedding_model_name)
collection_name_qna = 'report_10K_db'
persisted_vectordb_location = './report_10K_db'
# Load the persisted vectorDB
vectorstore_persisted = Chroma(
collection_name=collection_name_qna,
persist_directory=persisted_vectordb_location,
embedding_function=embedding_model
)
vectorstore_retriever = vectorstore_persisted.as_retriever(
search_type='similarity',
search_kwargs={'k': 5}
)
# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
scheduler = CommitScheduler(
repo_id="RavikantSingh_reports_qna_logs",
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
# Define the Q&A system message
qna_system_message = """
You are an assistant to a financial technology services firm who does timely and accurate recommendations to its clients based on 10-K reports from various industry players
The firm has expertise in investment management and financial planning.
User input will have the context required by you to answer user questions.
This context will begin with the token: ###Context.
The context contains references to specific portions of a document relevant to the user query.
User questions will begin with the token: ###Question.
When crafting your response:
1. Select only context relevant to answer the question.
2. Include the source links in your response. Get the Page Nbr in the final response from Source.
3. User questions will begin with the token: ###Question.
4. If the question is irrelevant to 10-K respond with - "I am an assistant for 10-K reports. I can only help you with that".
Please adhere to the following guidelines:
- Start the answer under the section - Answer.
- Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
- Your response should only be about the question asked and nothing else.
- Answer only using the context provided.
- If the answer is not found in the context, it is very very important for you to respond with "I don't know. Please check the docs @ '/content/dataset/'"
- Do not make up sources. Use the links provided in the sources section of the context and nothing else. You are prohibited from providing other links/sources.
Please answer only using the context provided in the input. Do not mention anything about the context in your final answer.
Here is an example of how to structure your response:
Answer:
[Answer]
Source:
[Source]
"""
# Define the user message template
qna_user_message_template = """
###Context
Here are some documents and their source links that are relevant to the question mentioned below.
{context}
###Question
{question}
"""
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
def predict(user_input,company):
filter_company = "/content/dataset/"+company+"-10-k-2023.pdf"
#relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter_company})
# Create context_for_query
user_input = user_input
relevant_document_chunks = vectorstore_retriever.get_relevant_documents(user_input,k=5,filter={"source":filter_company})
context_list = [d.page_content for d in relevant_document_chunks]
context_for_query = ". ".join(context_list)
# Create messages
prompt = [
{'role':'system', 'content': qna_system_message},
{'role': 'user', 'content': qna_user_message_template.format(
context=context_for_query,
question=user_input
)
}
]
# Get response from the LLM
try:
response = client.chat.completions.create(
model=model_name,
messages=prompt,
temperature=0
)
print("responseRavi",response)
prediction = response.choices[0].message.content.strip()
except Exception as e:
prediction = f'Sorry, I encountered the following error: \n {e}'
# While the prediction is made, log both the inputs and outputs to a local log file
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
# access
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'user_input': user_input,
'retrieved_context': context_for_query,
'model_response': prediction
}
))
f.write("\n")
return prediction
# Set-up the Gradio UI
# Add text box and radio button to the interface
# The radio button is used to select the company 10k report in which the context needs to be retrieved.
textbox = gr.Textbox(placeholder="Enter your Query.",lines=6)
company = gr.Radio(["Meta","aws","google","IBM","msft"], label="Companies Reports")
# Create the interface
# For the inputs parameter of Interface provide [textbox,company]
demo = gr.Interface(
fn=predict,
inputs=[textbox,company],
outputs="text",
title="Insights from 10-K reports",
description="AI for extraction, summarization, and analysis of information from the 10-K reports",
allow_flagging="auto",
concurrency_limit=12
)
if __name__ == "__main__":
demo.queue()
demo.launch() |