File size: 6,184 Bytes
9c082ed
 
 
 
 
 
 
 
 
 
14d1708
 
9c082ed
2cb9163
9c082ed
 
 
 
 
 
 
8cdce23
9c082ed
 
78c829e
 
1530369
9c082ed
 
 
 
78c829e
9598589
9c082ed
a7fcda8
9c082ed
78c829e
 
7632712
9c082ed
a7fcda8
6e5ff9e
 
 
 
 
a7fcda8
9c082ed
 
 
 
 
 
38eda8d
9c082ed
 
 
 
 
 
 
 
f84d692
 
9c082ed
 
 
0f754dc
9c082ed
0f754dc
9c082ed
 
f84d692
9c082ed
f84d692
0f754dc
9c082ed
f84d692
 
9c082ed
 
 
 
0f754dc
9c082ed
0f754dc
9c082ed
0f754dc
9c082ed
 
 
 
 
0f754dc
9c082ed
 
 
 
 
 
 
 
0f754dc
9c082ed
 
 
06507d6
 
9c082ed
 
 
c5c21b3
a7fcda8
9c082ed
 
1b69af7
9c082ed
 
 
 
 
 
 
 
 
 
 
1530369
9c082ed
 
5bdf46a
9c082ed
 
 
1b69af7
8e9c9e5
9c082ed
 
83d750e
9c082ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b323a
9c082ed
 
 
 
 
 
0ea8f26
9c082ed
 
 
 
 
 
 
 
78c829e
 
9c082ed
 
 
0f754dc
 
9c082ed
0f754dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
## Setup
# Import the necessary Libraries
import os
import uuid
import joblib
import json

import gradio as gr
import pandas as pd

from huggingface_hub import InferenceClient,CommitScheduler

from pathlib import Path
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma

from openai import OpenAI

# Create Client
client = OpenAI(
    base_url="https://api.endpoints.anyscale.com/v1",
    api_key=os.environ['anyscale_api_key']
)

#model_name = 'mlabonne/NeuralHermes-2.5-Mistral-7B'
model_name = 'mistralai/Mixtral-8x7B-Instruct-v0.1'

# Define the embedding model and the vectorstore
embedding_model_name = 'thenlper/gte-large'
embedding_model = SentenceTransformerEmbeddings(model_name=embedding_model_name)
collection_name_qna = 'report_10K_db'
persisted_vectordb_location = './report_10K_db'

# Load the persisted vectorDB

vectorstore_persisted = Chroma(
    collection_name=collection_name_qna,
    persist_directory=persisted_vectordb_location,
    embedding_function=embedding_model
)

vectorstore_retriever = vectorstore_persisted.as_retriever(
    search_type='similarity',
    search_kwargs={'k': 5}
)


# Prepare the logging functionality

log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id="RavikantSingh_reports_qna_logs",
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

# Define the Q&A system message
qna_system_message = """
You are an assistant to a financial technology services firm who does timely and accurate recommendations to its clients based on 10-K reports from various industry players
The firm has expertise in investment management and financial planning.
User input will have the context required by you to answer user questions.
This context will begin with the token: ###Context.
The context contains references to specific portions of a document relevant to the user query.

User questions will begin with the token: ###Question.

When crafting your response:
1. Select only context relevant to answer the question.
2. Include the source links in your response. Get the Page Nbr in the final response from Source.
3. User questions will begin with the token: ###Question.
4. If the question is irrelevant to 10-K respond with - "I am an assistant for 10-K reports. I can only help you with that".

Please adhere to the following guidelines:
- Start the answer under the section - Answer.
- Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
- Your response should only be about the question asked and nothing else.
- Answer only using the context provided.
- If the answer is not found in the context, it is very very important for you to respond with "I don't know. Please check the docs @ '/content/dataset/'"
- Do not make up sources. Use the links provided in the sources section of the context and nothing else. You are prohibited from providing other links/sources.

Please answer only using the context provided in the input. Do not mention anything about the context in your final answer.

Here is an example of how to structure your response:

Answer:
[Answer]

Source:
[Source]
"""
# Define the user message template
qna_user_message_template = """
###Context
Here are some documents and their source links that are relevant to the question mentioned below.
{context}

###Question
{question}
"""
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
def predict(user_input,company):

    filter_company = "/content/dataset/"+company+"-10-k-2023.pdf"
    #relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter_company})

    # Create context_for_query
    user_input = user_input
    relevant_document_chunks = vectorstore_retriever.get_relevant_documents(user_input,k=5,filter={"source":filter_company})
    
    context_list = [d.page_content for d in relevant_document_chunks]
    context_for_query = ". ".join(context_list)

    # Create messages
    prompt = [
              {'role':'system', 'content': qna_system_message},
              {'role': 'user', 'content': qna_user_message_template.format(
                  context=context_for_query,
                  question=user_input
                  )
              }
              ]

    # Get response from the LLM
    
    try:
        response = client.chat.completions.create(
            model=model_name,
            messages=prompt,
            temperature=0
        )
        print("responseRavi",response)
        prediction = response.choices[0].message.content.strip()
    except Exception as e:
        prediction = f'Sorry, I encountered the following error: \n {e}'

    # While the prediction is made, log both the inputs and outputs to a local log file
    # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
    # access

    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'user_input': user_input,
                    'retrieved_context': context_for_query,
                    'model_response': prediction
                }
            ))
            f.write("\n")

    return prediction

# Set-up the Gradio UI
# Add text box and radio button to the interface
# The radio button is used to select the company 10k report in which the context needs to be retrieved.

textbox = gr.Textbox(placeholder="Enter your Query.",lines=6)
company = gr.Radio(["Meta","aws","google","IBM","msft"], label="Companies Reports")


# Create the interface
# For the inputs parameter of Interface provide [textbox,company]
demo = gr.Interface(
    fn=predict,
    inputs=[textbox,company],
    outputs="text",
    title="Insights from 10-K reports",
    description="AI for extraction, summarization, and analysis of information from the 10-K reports",
    allow_flagging="auto",
    concurrency_limit=12
)

if __name__ == "__main__":
    demo.queue()
    demo.launch()