import gradio as gr import cv2 import requests import os from ultralytics import YOLO model = YOLO("best_model.pt") example_imgs = [ os.path.join("example", "img", example) for example in os.listdir("example/img") ] example_vids = [ os.path.join("example", "vid", example) for example in os.listdir("example/vid") ] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA, ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for det in results.boxes.xyxy: cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA, ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Define the Gradio interface for image input interface_image = gr.Interface( fn=show_preds_image, inputs=gr.components.Image(type="filepath", label="Input Image"), outputs=gr.components.Image(type="numpy", label="Output Image"), title="Pothole Detector - Image", examples=example_imgs, cache_examples=False, ) # For video processing, it's best to process and then show the output video. def show_preds_video(video_path): cap = cv2.VideoCapture(video_path) while(cap.isOpened()): ret, frame = cap.read() if ret: frame_copy = frame.copy() outputs = model.predict(source=frame) results = outputs[0].cpu().numpy() for det in results.boxes.xyxy: cv2.rectangle( frame_copy, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) else: break cap.release() inputs_video = gr.components.Video(label="Input Video") outputs_video = gr.components.Image(label="Output Image", type="numpy") interface_video = gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, title="Pothole Detector", examples=example_vids, cache_examples=False, ) # Combine the interfaces into a tabbed interface gr.TabbedInterface( [interface_image, interface_video], tab_names=["Image Inference", "Video Inference"] ).launch()