Spaces:
Sleeping
Sleeping
ranggaaldosas
commited on
Commit
•
9ec6d86
1
Parent(s):
38a3d50
feat: fix app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,14 @@ import os
|
|
5 |
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
-
model = YOLO(
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def show_preds_image(image_path):
|
12 |
image = cv2.imread(image_path)
|
@@ -19,61 +25,58 @@ def show_preds_image(image_path):
|
|
19 |
(int(det[2]), int(det[3])),
|
20 |
color=(0, 0, 255),
|
21 |
thickness=2,
|
22 |
-
lineType=cv2.LINE_AA
|
23 |
)
|
24 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
interface_image = gr.Interface(
|
33 |
fn=show_preds_image,
|
34 |
-
inputs=
|
35 |
-
outputs=
|
36 |
-
title="Pothole
|
37 |
-
examples=
|
38 |
cache_examples=False,
|
39 |
)
|
40 |
|
|
|
|
|
|
|
41 |
def show_preds_video(video_path):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
frame_copy = frame.copy()
|
47 |
-
outputs = model.predict(source=frame)
|
48 |
-
results = outputs[0].cpu().numpy()
|
49 |
-
for i, det in enumerate(results.boxes.xyxy):
|
50 |
-
cv2.rectangle(
|
51 |
-
frame_copy,
|
52 |
-
(int(det[0]), int(det[1])),
|
53 |
-
(int(det[2]), int(det[3])),
|
54 |
-
color=(0, 0, 255),
|
55 |
-
thickness=2,
|
56 |
-
lineType=cv2.LINE_AA
|
57 |
-
)
|
58 |
-
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
59 |
|
60 |
-
inputs_video = [
|
61 |
-
gr.components.Video(type="filepath", label="Input Video"),
|
62 |
|
63 |
-
|
64 |
-
outputs_video = [
|
65 |
-
gr.components.Image(type="numpy", label="Output Image"),
|
66 |
-
]
|
67 |
interface_video = gr.Interface(
|
68 |
fn=show_preds_video,
|
69 |
-
inputs=
|
70 |
-
outputs=
|
71 |
-
title="Pothole
|
72 |
-
examples=
|
73 |
cache_examples=False,
|
74 |
)
|
75 |
|
|
|
76 |
gr.TabbedInterface(
|
77 |
-
[interface_image, interface_video],
|
78 |
-
|
79 |
-
).queue().launch()
|
|
|
5 |
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
+
model = YOLO("best_model.pt")
|
9 |
+
example_imgs = [
|
10 |
+
os.path.join("example", "img", example) for example in os.listdir("example/img")
|
11 |
+
]
|
12 |
+
example_vids = [
|
13 |
+
os.path.join("example", "vid", example) for example in os.listdir("example/vid")
|
14 |
+
]
|
15 |
+
|
16 |
|
17 |
def show_preds_image(image_path):
|
18 |
image = cv2.imread(image_path)
|
|
|
25 |
(int(det[2]), int(det[3])),
|
26 |
color=(0, 0, 255),
|
27 |
thickness=2,
|
28 |
+
lineType=cv2.LINE_AA,
|
29 |
)
|
30 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
31 |
|
32 |
+
|
33 |
+
def show_preds_image(image_path):
|
34 |
+
image = cv2.imread(image_path)
|
35 |
+
outputs = model.predict(source=image_path)
|
36 |
+
results = outputs[0].cpu().numpy()
|
37 |
+
for det in results.boxes.xyxy:
|
38 |
+
cv2.rectangle(
|
39 |
+
image,
|
40 |
+
(int(det[0]), int(det[1])),
|
41 |
+
(int(det[2]), int(det[3])),
|
42 |
+
color=(0, 0, 255),
|
43 |
+
thickness=2,
|
44 |
+
lineType=cv2.LINE_AA,
|
45 |
+
)
|
46 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
47 |
+
|
48 |
+
|
49 |
+
# Define the Gradio interface for image input
|
50 |
interface_image = gr.Interface(
|
51 |
fn=show_preds_image,
|
52 |
+
inputs=gr.components.Image(type="filepath", label="Input Image"),
|
53 |
+
outputs=gr.components.Image(type="numpy", label="Output Image"),
|
54 |
+
title="Pothole Detector - Image",
|
55 |
+
examples=example_imgs,
|
56 |
cache_examples=False,
|
57 |
)
|
58 |
|
59 |
+
|
60 |
+
# For video processing, it's best to process and then show the output video.
|
61 |
+
# This is a simplified placeholder for video processing, indicating where to include the video processing logic.
|
62 |
def show_preds_video(video_path):
|
63 |
+
# Placeholder for video processing function
|
64 |
+
# Process the video here and save the output, then return the path to the processed video
|
65 |
+
processed_video_path = "processed_video.mp4" # Example output path
|
66 |
+
return processed_video_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
68 |
|
69 |
+
# Define the Gradio interface for video input
|
|
|
|
|
|
|
70 |
interface_video = gr.Interface(
|
71 |
fn=show_preds_video,
|
72 |
+
inputs=gr.components.Video(type="filepath", label="Input Video"),
|
73 |
+
outputs=gr.components.Video(label="Processed Video"),
|
74 |
+
title="Pothole Detector - Video",
|
75 |
+
examples=example_vids,
|
76 |
cache_examples=False,
|
77 |
)
|
78 |
|
79 |
+
# Combine the interfaces into a tabbed interface
|
80 |
gr.TabbedInterface(
|
81 |
+
[interface_image, interface_video], tab_names=["Image Inference", "Video Inference"]
|
82 |
+
).launch()
|
|