|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
from diffusers import FluxPipeline, FluxTransformer2DModel,FlowMatchEulerDiscreteScheduler, AutoencoderKL |
|
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast |
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" |
|
|
|
sd3_repo = "stabilityai/stable-diffusion-3-medium-diffusers" |
|
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained (sd3_repo, subfolder="scheduler") |
|
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype) |
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype) |
|
text_encoder_2 = T5EncoderModel.from_pretrained(sd3_repo, subfolder="text_encoder_3", torch_dtype=dtype) |
|
tokenizer_2 = T5TokenizerFast.from_pretrained(sd3_repo, subfolder="tokenizer_3", torch_dtype=dtype) |
|
vae = AutoencoderKL.from_pretrained("diffusers-internal-dev/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype) |
|
transformer = FluxTransformer2DModel.from_pretrained("diffusers-internal-dev/FLUX.1-schnell", subfolder="transformer", torch_dtype=dtype) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = FluxPipeline( |
|
scheduler=scheduler, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer_2=tokenizer_2, |
|
vae=vae, |
|
transformer=transformer, |
|
).to("cuda") |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
@spaces.GPU() |
|
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
image = pipe( |
|
prompt = prompt, |
|
width = width, |
|
height = height, |
|
num_inference_steps = num_inference_steps, |
|
generator = generator, |
|
guidance_scale=0.0 |
|
).images[0] |
|
return image, seed |
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cat holding a sign that says hello world", |
|
"an anime illustration of a wiener schnitzel", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# FLUX.1 [schnell] |
|
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation |
|
[[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://huggingface.co./black-forest-labs/FLUX.1-schnell)] |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=4, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = infer, |
|
inputs = [prompt], |
|
outputs = [result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], |
|
outputs = [result, seed] |
|
) |
|
|
|
demo.launch() |