File size: 9,446 Bytes
c3f2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
import librosa
import numpy as np
import torch
import torch.nn.functional as F
from pathlib import Path

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier

title = "SpeechT5: Voice Conversion"
description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the <b>text-to-speech</b> and <b>speech-to-speech</b> checkpoints for (American) English
language voice cloning.
<p><b>How to use:</b> Upload target voice audio file or select from the list [or record using the microphone -TBD]. The audio is converted to mono and resampled to 16 kHz before
being passed into the EncoderClassifier model to obtain target voice embedding. Enter text in the text box or upload source voice audio file [or record using the microphone -TBD]. 
The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the HiFi-GAN vocoder.
Because the model always applies random dropout, each attempt will give slightly different results.
"""
article = """
<div style='margin:20px auto;'>
<p>Original demos: <a href="https://huggingface.co./spaces/Matthijs/speecht5-asr-demo">Speech recognition (ASR) demo</a> |
<a href="https://huggingface.co./spaces/Matthijs/speecht5-tts-demo">TTS demo</a> |
<a href="https://huggingface.co./spaces/Matthijs/speecht5-vc-demo">Voice Conversion demo</a> |
<a href="https://colab.research.google.com/drive/1XnOnCsmEmA3lHmzlNRNxRMcu80YZQzYf?usp=sharing">An interactive Colab notebook</a> |
<a href="https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ">Fine-tunining SpeechT5 TTS</a>

<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://huggingface.co./blog/speecht5">SpeechT5 blog post</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co./mechanicalsea/speecht5-vc">original weights</a></p>
<pre>
@article{Ao2021SpeechT5,
  title   = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing},
  author  = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei},
  eprint={2110.07205},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  year={2021}
}
</pre>
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co./mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>
</div>
"""

device = "cuda" if torch.cuda.is_available() else "cpu"

checkpoint = "microsoft/speecht5_vc"
processor_vc = SpeechT5Processor.from_pretrained(checkpoint)
model_vc = SpeechT5ForSpeechToSpeech.from_pretrained(checkpoint)
checkpoint_tts = "microsoft/speecht5_tts"
processor_tts = SpeechT5Processor.from_pretrained(checkpoint_tts)
model_tts = SpeechT5ForTextToSpeech.from_pretrained(checkpoint_tts)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")


model_embed = {
    "speechbrain/spkrec-xvect-voxceleb": 512, 
    "speechbrain/spkrec-ecapa-voxceleb": 192,
}
checkpoint_embed = "speechbrain/spkrec-xvect-voxceleb"
size_embed = model_embed[checkpoint_embed]
embeding_classifier = EncoderClassifier.from_hparams(source=checkpoint_embed, run_opts={"device": device}, savedir="/tmp/speaker_embed")

examples_pt = 'examples'
allowed_extentions = ['.mp3', '.wav']
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
default_voice = list(examples.keys())[0]
verse = """Mary had a little lamb,
Its fleece was white as snow.
Everywhere the child went,
The little lamb was sure to go."""

def process_audio(sampling_rate, waveform, target_sr=16000):
    # convert from int16 to floating point
    waveform = waveform / 32678.0

    # convert to mono if stereo
    if len(waveform.shape) > 1:
        waveform = librosa.to_mono(waveform.T)

    # resample to 16 kHz if necessary
    if sampling_rate != target_sr:
        waveform = librosa.resample(waveform, orig_sr=sampling_rate, target_sr=target_sr)

    # limit to 30 seconds
    waveform = waveform[:target_sr * 30]

    # make PyTorch tensor
    waveform = torch.tensor(waveform)
    return waveform


def f2embed(waveform, sz):
    with torch.no_grad():
        embeddings = embeding_classifier.encode_batch(waveform)
        embeddings = F.normalize(embeddings, dim=2)
        embeddings = embeddings.squeeze().cpu().numpy()
    assert embeddings.shape[0] == sz, embeddings.shape[0]
    return embeddings


def on_voicedropdown(x):
    return examples[x]


def on_voiceload(audio, sz=size_embed):
    print("on_voiceload")
    # audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
    if audio is not None:
        sampling_rate, waveform = audio
    else:
        return np.zeros(sz)
    waveform = process_audio(sampling_rate, waveform)
    embed = f2embed(waveform, sz)
    print("Generated embedding", embed[:5])
    return embed


def voice_clone(audio, speaker_embedding, target_sr=16000):
    # audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
    if audio is None or speaker_embedding is None:
        return (target_sr, np.zeros(0).astype(np.int16))
    else:
        sampling_rate, waveform = audio

    waveform = process_audio(sampling_rate, waveform)
    inputs = processor_vc(audio=waveform, sampling_rate=target_sr, return_tensors="pt")

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model_vc.generate_speech(inputs["input_values"], speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (target_sr, speech)

def text_to_speech(text, speaker_embedding, target_sr=16000):
    if len(text.strip()) == 0 or speaker_embedding is None:
        return (target_sr, np.zeros(0).astype(np.int16))
    
    inputs = processor_tts(text=text, return_tensors="pt")
    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model_tts.config.max_text_positions]

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model_tts.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (target_sr, speech)

theme = gr.themes.Monochrome()
with gr.Blocks() as demo:
    voice_embedding = gr.State(None)
    def activate(*args):
        return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
    def deactivate(*args):
        return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)

    gr.Markdown(description)
    
    with gr.Accordion("Voice to clone", open=False) as accordion:
        gr.Markdown("Upload target voice...")
        with gr.Row(equal_height=True):
            voice_upload = gr.Audio(label="Upload target voice", source="upload", type="numpy")
            voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)

#         TODO: couldn't catch microphone stop event
#         mic = gr.Audio(label="Record Speech", source="microphone", type="numpy")
#         mic.stop(fn=lambda x: print('mic stop'), inputs=None, outputs=None)
    
    with gr.Row(equal_height=True):
        with gr.Column(scale=2):
            with gr.Row(equal_height=True):
                text_to_convert = gr.Textbox(verse)
                voice_to_convert = gr.Audio(label="Upload voice to convert", source="upload", type="numpy")
            with gr.Row(equal_height=True):
                button_text = gr.Button("Text to speech", interactive=False)
                button_audio = gr.Button("Convert audio", interactive=False)
    with gr.Row(equal_height=True):
        speech = gr.Audio(label="Converted Speech", type="numpy", visible=True, interactive=False)        

    # actions
    kwargs = dict(fn=on_voiceload, inputs=voice_upload, outputs=voice_embedding)
    voice_upload.upload(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(**kwargs).then(activate, [button_text, button_audio], [button_text, button_audio])
    voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
        then(**kwargs).then(activate, [button_text, button_audio], [button_text, button_audio])
    button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=text_to_speech, inputs=[text_to_convert, voice_embedding], outputs=speech).\
        then(activate, [button_text, button_audio], [button_text, button_audio])
    button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=voice_clone, inputs=[voice_to_convert, voice_embedding], outputs=speech).\
        then(activate, [button_text, button_audio], [button_text, button_audio])
    
    gr.HTML(article)
demo.launch(share=False)