rajistics's picture
Update app.py
14e3525
import json
import os
import shutil
import requests
import spaces
import gradio as gr
from huggingface_hub import Repository
from text_generation import Client
from transformers import AutoModelForCausalLM, AutoTokenizer
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
checkpoint = "smallcloudai/Refact-1_6B-fim"
device = "cuda"
#device = "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)
FIM_PREFIX = "<fim_prefix>"
FIM_MIDDLE = "<fim_middle>"
FIM_SUFFIX = "<fim_suffix>"
FIM_INDICATOR = "<FILL_HERE>"
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[
gr.themes.GoogleFont("Open Sans"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
)
@spaces.GPU
def generate(
prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, version="StarCoder",
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
fim_mode = False
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
if FIM_INDICATOR in prompt:
fim_mode = True
try:
prefix, suffix = prompt.split(FIM_INDICATOR)
except:
raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!")
prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}"
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_length=100, temperature=0.2)
final = tokenizer.decode(outputs[0])
return final
examples = [
"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
"// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
"Poor English: She no went to the market. Corrected English:",
"def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n <FILL_HERE>\n else:\n results.extend(list2[i+1:])\n return results",
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}"
monospace_css = """
#q-input textarea {
font-family: monospace, 'Consolas', Courier, monospace;
}
"""
css += share_btn_css + monospace_css + ".gradio-container {color: black}"
description = """
<div style="text-align: center;">
<h1> Refact 1.6B <span style='color: #e6b800;'>Models</span> Playground</h1>
</div>
<div style="text-align: left;">
<p>This is a demo to generate text and code with the following model:</p>
<ul>
<li><a href="https://huggingface.co./smallcloudai/Refact-1_6B-fim" style='color: #e6b800;'>ReFact 1.6B</a>: An Open-Source Coding Assistant with Fine-Tuning on codebase, autocompletion, code refactoring, code analysis, integrated chat and more</li>
</ul>
<p><b>Please note:</b> This space is based on the Big Code Playground, and not all functionality may work. It is running on GPUZero, but can also be run on GPU/CPU.</p>
</div>
"""
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(description)
with gr.Row():
version = gr.Dropdown(
["Refact"],
value="Refact",
label="Model",
info="Choose a model from the list",
)
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
placeholder="Enter your code here",
lines=5,
label="Input",
elem_id="q-input",
)
submit = gr.Button("Generate", variant="primary")
output = gr.Code(elem_id="q-output", lines=30, label="Output")
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
column_1, column_2 = gr.Column(), gr.Column()
with column_1:
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=8192,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
)
with column_2:
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_example,
outputs=[output],
)
submit.click(
generate,
inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty, version],
outputs=[output],
)
demo.launch(debug=True)