Spaces:
Build error
Build error
import json | |
import os | |
import shutil | |
import requests | |
import spaces | |
import gradio as gr | |
from huggingface_hub import Repository | |
from text_generation import Client | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css | |
checkpoint = "smallcloudai/Refact-1_6B-fim" | |
device = "cuda" | |
#device = "cpu" # for GPU usage or "cpu" for CPU usage | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device) | |
FIM_PREFIX = "<fim_prefix>" | |
FIM_MIDDLE = "<fim_middle>" | |
FIM_SUFFIX = "<fim_suffix>" | |
FIM_INDICATOR = "<FILL_HERE>" | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
radius_size=gr.themes.sizes.radius_sm, | |
font=[ | |
gr.themes.GoogleFont("Open Sans"), | |
"ui-sans-serif", | |
"system-ui", | |
"sans-serif", | |
], | |
) | |
def generate( | |
prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, version="StarCoder", | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
fim_mode = False | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
if FIM_INDICATOR in prompt: | |
fim_mode = True | |
try: | |
prefix, suffix = prompt.split(FIM_INDICATOR) | |
except: | |
raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!") | |
prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" | |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device) | |
outputs = model.generate(inputs, max_length=100, temperature=0.2) | |
final = tokenizer.decode(outputs[0]) | |
return final | |
examples = [ | |
"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score", | |
"// Returns every other value in the array as a new array.\nfunction everyOther(arr) {", | |
"Poor English: She no went to the market. Corrected English:", | |
"def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n <FILL_HERE>\n else:\n results.extend(list2[i+1:])\n return results", | |
] | |
def process_example(args): | |
for x in generate(args): | |
pass | |
return x | |
css = ".generating {visibility: hidden}" | |
monospace_css = """ | |
#q-input textarea { | |
font-family: monospace, 'Consolas', Courier, monospace; | |
} | |
""" | |
css += share_btn_css + monospace_css + ".gradio-container {color: black}" | |
description = """ | |
<div style="text-align: center;"> | |
<h1> Refact 1.6B <span style='color: #e6b800;'>Models</span> Playground</h1> | |
</div> | |
<div style="text-align: left;"> | |
<p>This is a demo to generate text and code with the following model:</p> | |
<ul> | |
<li><a href="https://huggingface.co./smallcloudai/Refact-1_6B-fim" style='color: #e6b800;'>ReFact 1.6B</a>: An Open-Source Coding Assistant with Fine-Tuning on codebase, autocompletion, code refactoring, code analysis, integrated chat and more</li> | |
</ul> | |
<p><b>Please note:</b> This space is based on the Big Code Playground, and not all functionality may work. It is running on GPUZero, but can also be run on GPU/CPU.</p> | |
</div> | |
""" | |
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo: | |
with gr.Column(): | |
gr.Markdown(description) | |
with gr.Row(): | |
version = gr.Dropdown( | |
["Refact"], | |
value="Refact", | |
label="Model", | |
info="Choose a model from the list", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
instruction = gr.Textbox( | |
placeholder="Enter your code here", | |
lines=5, | |
label="Input", | |
elem_id="q-input", | |
) | |
submit = gr.Button("Generate", variant="primary") | |
output = gr.Code(elem_id="q-output", lines=30, label="Output") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Row(): | |
column_1, column_2 = gr.Column(), gr.Column() | |
with column_1: | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.2, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=8192, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
) | |
with column_2: | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[instruction], | |
cache_examples=False, | |
fn=process_example, | |
outputs=[output], | |
) | |
submit.click( | |
generate, | |
inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty, version], | |
outputs=[output], | |
) | |
demo.launch(debug=True) |