Spaces:
Runtime error
Runtime error
first push
Browse files- README.md +16 -12
- app.py +127 -0
- images/tight@1920x_transparent.png +0 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
# Transformer Interpret Streamlit App
|
2 |
+
|
3 |
+
![App GIF](https://i.gyazo.com/842a91085da2c6a9039f12276d00646a.gif)
|
4 |
+
|
5 |
+
- Simple streamlit app to demonstrate some of the features of [Transformers Interpret](https://github.com/cdpierse/transformers-interpret).
|
6 |
+
- View the word attributions of 7+ text classification HuggingFace Transformer models.
|
7 |
+
- View the attributions w.r.t to any class/label in a model.
|
8 |
+
- View attributions w.r.t to both word and position embeddings for a model
|
9 |
+
## Install
|
10 |
+
|
11 |
+
`pip install -r requirements.txt `
|
12 |
+
|
13 |
+
|
14 |
+
## Run
|
15 |
+
|
16 |
+
`streamlit run app.py`
|
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import gc
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import psutil
|
8 |
+
import streamlit as st
|
9 |
+
from PIL import Image
|
10 |
+
from streamlit import components
|
11 |
+
from streamlit.caching import clear_cache
|
12 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
13 |
+
from transformers_interpret import SequenceClassificationExplainer
|
14 |
+
|
15 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
16 |
+
logging.basicConfig(
|
17 |
+
format="%(asctime)s : %(levelname)s : %(message)s", level=logging.INFO
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def print_memory_usage():
|
22 |
+
logging.info(f"RAM memory % used: {psutil.virtual_memory()[2]}")
|
23 |
+
|
24 |
+
|
25 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=1)
|
26 |
+
def load_model(model_name):
|
27 |
+
return (
|
28 |
+
AutoModelForSequenceClassification.from_pretrained(model_name),
|
29 |
+
AutoTokenizer.from_pretrained(model_name),
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def main():
|
34 |
+
|
35 |
+
st.title("Transformers Interpet Demo App")
|
36 |
+
|
37 |
+
image = Image.open("./images/tight@1920x_transparent.png")
|
38 |
+
st.sidebar.image(image, use_column_width=True)
|
39 |
+
st.sidebar.markdown(
|
40 |
+
"Check out the package on [Github](https://github.com/cdpierse/transformers-interpret)"
|
41 |
+
)
|
42 |
+
st.info(
|
43 |
+
"Due to limited resources only low memory models are available. Run this [app locally](https://github.com/cdpierse/transformers-interpret-streamlit) to run the full selection of available models. "
|
44 |
+
)
|
45 |
+
|
46 |
+
# uncomment the options below to test out the app with a variety of classification models.
|
47 |
+
models = {
|
48 |
+
# "textattack/distilbert-base-uncased-rotten-tomatoes": "",
|
49 |
+
# "textattack/bert-base-uncased-rotten-tomatoes": "",
|
50 |
+
# "textattack/roberta-base-rotten-tomatoes": "",
|
51 |
+
# "mrm8488/bert-mini-finetuned-age_news-classification": "BERT-Mini finetuned on AG News dataset. Predicts news class (sports/tech/business/world) of text.",
|
52 |
+
# "nateraw/bert-base-uncased-ag-news": "BERT finetuned on AG News dataset. Predicts news class (sports/tech/business/world) of text.",
|
53 |
+
"distilbert-base-uncased-finetuned-sst-2-english": "DistilBERT model finetuned on SST-2 sentiment analysis task. Predicts positive/negative sentiment.",
|
54 |
+
# "ProsusAI/finbert": "BERT model finetuned to predict sentiment of financial text. Finetuned on Financial PhraseBank data. Predicts positive/negative/neutral.",
|
55 |
+
"sampathkethineedi/industry-classification": "DistilBERT Model to classify a business description into one of 62 industry tags.",
|
56 |
+
"MoritzLaurer/policy-distilbert-7d": "DistilBERT model finetuned to classify text into one of seven political categories.",
|
57 |
+
# # "MoritzLaurer/covid-policy-roberta-21": "(Under active development ) RoBERTA model finetuned to identify COVID policy measure classes ",
|
58 |
+
# "mrm8488/bert-tiny-finetuned-sms-spam-detection": "Tiny bert model finetuned for spam detection. 0 == not spam, 1 == spam",
|
59 |
+
}
|
60 |
+
model_name = st.sidebar.selectbox(
|
61 |
+
"Choose a classification model", list(models.keys())
|
62 |
+
)
|
63 |
+
model, tokenizer = load_model(model_name)
|
64 |
+
if model_name.startswith("textattack/"):
|
65 |
+
model.config.id2label = {0: "NEGATIVE (0) ", 1: "POSITIVE (1)"}
|
66 |
+
model.eval()
|
67 |
+
cls_explainer = SequenceClassificationExplainer(model=model, tokenizer=tokenizer)
|
68 |
+
if cls_explainer.accepts_position_ids:
|
69 |
+
emb_type_name = st.sidebar.selectbox(
|
70 |
+
"Choose embedding type for attribution.", ["word", "position"]
|
71 |
+
)
|
72 |
+
if emb_type_name == "word":
|
73 |
+
emb_type_num = 0
|
74 |
+
if emb_type_name == "position":
|
75 |
+
emb_type_num = 1
|
76 |
+
else:
|
77 |
+
emb_type_num = 0
|
78 |
+
|
79 |
+
explanation_classes = ["predicted"] + list(model.config.label2id.keys())
|
80 |
+
explanation_class_choice = st.sidebar.selectbox(
|
81 |
+
"Explanation class: The class you would like to explain output with respect to.",
|
82 |
+
explanation_classes,
|
83 |
+
)
|
84 |
+
my_expander = st.beta_expander(
|
85 |
+
"Click here for description of models and their tasks"
|
86 |
+
)
|
87 |
+
with my_expander:
|
88 |
+
st.json(models)
|
89 |
+
|
90 |
+
# st.info("Max char limit of 350 (memory management)")
|
91 |
+
text = st.text_area(
|
92 |
+
"Enter text to be interpreted",
|
93 |
+
"I like you, I love you",
|
94 |
+
height=400,
|
95 |
+
max_chars=850,
|
96 |
+
)
|
97 |
+
|
98 |
+
if st.button("Interpret Text"):
|
99 |
+
print_memory_usage()
|
100 |
+
|
101 |
+
st.text("Output")
|
102 |
+
with st.spinner("Interpreting your text (This may take some time)"):
|
103 |
+
if explanation_class_choice != "predicted":
|
104 |
+
word_attributions = cls_explainer(
|
105 |
+
text,
|
106 |
+
class_name=explanation_class_choice,
|
107 |
+
embedding_type=emb_type_num,
|
108 |
+
internal_batch_size=2,
|
109 |
+
)
|
110 |
+
else:
|
111 |
+
word_attributions = cls_explainer(
|
112 |
+
text, embedding_type=emb_type_num, internal_batch_size=2
|
113 |
+
)
|
114 |
+
|
115 |
+
if word_attributions:
|
116 |
+
word_attributions_expander = st.beta_expander(
|
117 |
+
"Click here for raw word attributions"
|
118 |
+
)
|
119 |
+
with word_attributions_expander:
|
120 |
+
st.json(word_attributions)
|
121 |
+
components.v1.html(
|
122 |
+
cls_explainer.visualize()._repr_html_(), scrolling=True, height=350
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
main()
|
images/tight@1920x_transparent.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==0.82.0
|
2 |
+
transformers_interpret==0.5.1
|
3 |
+
pandas==1.0.3
|
4 |
+
transformers==4.3.2
|
5 |
+
psutil==5.7.0
|