{ "cells": [ { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import os\n", "import gradio as gr\n", "from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "tokenizer = AutoTokenizer.from_pretrained(\"yiyanghkust/finbert-fls\")\n", "\n", "finbert = AutoModelForSequenceClassification.from_pretrained(\"yiyanghkust/finbert-fls\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "nlp = pipeline(\"text-classification\", model=finbert, tokenizer=tokenizer)\n", "results = nlp(['we expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.',\n", " 'on an equivalent unit of production basis, general and administrative expenses declined 24 percent from 1994 to $.67 per boe.',\n", " 'we will continue to assess the need for a valuation allowance against deferred tax assets considering all available evidence obtained in future reporting periods.'])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'label': 'Specific FLS', 'score': 0.77278733253479},\n", " {'label': 'Not FLS', 'score': 0.9905241131782532},\n", " {'label': 'Non-specific FLS', 'score': 0.975904107093811}]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "['we expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.',\n", " 'on an equivalent unit of production basis, general and administrative expenses declined 24 percent from 1994 to $.67 per boe.',\n", " 'we will continue to assess the need for a valuation allowance against deferred tax assets considering all available evidence obtained in future reporting periods.']]" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860/\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "title = \"Forward Looking Statement Classification with FinBERT\"\n", "description = \"This model classifies a sentence into one of the three categories: Specific FLS, Non- Specific FLS, and Not-FLS. We label a sentence as Specific FLS if it is about the future of the company, as Non-Specific FLS if it is future-oriented but could be said of any company (e.g., cautionary language or risk disclosure), and as Not-FLS if it is not about the future.\"\n", "examples =[['we expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.'],\n", " ['on an equivalent unit of production basis, general and administrative expenses declined 24 percent from 1994 to $.67 per boe.'],\n", " ['we will continue to assess the need for a valuation allowance against deferred tax assets considering all available evidence obtained in future reporting periods.']]\n", "\n", "def get_sentiment(input_text):\n", " return nlp(input_text)\n", "\n", "iface = gr.Interface(fn=get_sentiment, \n", " inputs=\"text\", \n", " outputs=[\"text\"],\n", " title=title,\n", " description=description,\n", " examples=examples)\n", "iface.launch(debug=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "325bbc5f2b77b6a5675ad3f6ec2d9cde3e7a8993fd48d3c331b30741632a2dac" }, "kernelspec": { "display_name": "Python 3.8.13 ('hf_public')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }