File size: 5,435 Bytes
bca06e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import gradio as gr\n",
    "from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(\"yiyanghkust/finbert-fls\")\n",
    "\n",
    "finbert = AutoModelForSequenceClassification.from_pretrained(\"yiyanghkust/finbert-fls\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "nlp = pipeline(\"text-classification\", model=finbert, tokenizer=tokenizer)\n",
    "results = nlp(['we expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.',\n",
    "               'on an equivalent unit of production basis, general and administrative expenses declined 24 percent from 1994 to $.67 per boe.',\n",
    "               'we will continue to assess the need for a valuation allowance against deferred tax assets considering all available evidence obtained in future reporting periods.'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<transformers.pipelines.text_classification.TextClassificationPipeline at 0x144572f40>"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'label': 'Specific FLS', 'score': 0.77278733253479},\n",
       " {'label': 'Not FLS', 'score': 0.9905241131782532},\n",
       " {'label': 'Non-specific FLS', 'score': 0.975904107093811}]"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "['we expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.',\n",
    "               'on an equivalent unit of production basis, general and administrative expenses declined 24 percent from 1994 to $.67 per boe.',\n",
    "               'we will continue to assess the need for a valuation allowance against deferred tax assets considering all available evidence obtained in future reporting periods.']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860/\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"900\" height=\"500\" allow=\"autoplay; camera; microphone;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "title = \"Forward Looking Statement Classification with FinBERT\"\n",
    "description = \"This model classifies a sentence into one of the three categories: Specific FLS, Non- Specific FLS, and Not-FLS. We label a sentence as Specific FLS if it is about the future of the company, as Non-Specific FLS if it is future-oriented but could be said of any company (e.g., cautionary language or risk disclosure), and as Not-FLS if it is not about the future.\"\n",
    "examples =[['we expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.'],\n",
    "               ['on an equivalent unit of production basis, general and administrative expenses declined 24 percent from 1994 to $.67 per boe.'],\n",
    "               ['we will continue to assess the need for a valuation allowance against deferred tax assets considering all available evidence obtained in future reporting periods.']]\n",
    "\n",
    "def get_sentiment(input_text):\n",
    "  return nlp(input_text)\n",
    "\n",
    "iface = gr.Interface(fn=get_sentiment, \n",
    "                     inputs=\"text\", \n",
    "                     outputs=[\"text\"],\n",
    "                     title=title,\n",
    "                     description=description,\n",
    "                     examples=examples)\n",
    "iface.launch(debug=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "325bbc5f2b77b6a5675ad3f6ec2d9cde3e7a8993fd48d3c331b30741632a2dac"
  },
  "kernelspec": {
   "display_name": "Python 3.8.13 ('hf_public')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}