import streamlit as st import datetime from transformers import pipeline import gradio as gr asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion") def transcribe(audio): text = asr(audio)["text"] return text def speech_to_text(speech): text = asr(speech)["text"] return text def text_to_sentiment(text): sentiment = classifier(text)[0]["label"] return sentiment demo = gr.Blocks() with demo: audio_file = gr.inputs.Audio(source="microphone", type="filepath") b1 = gr.Button("Recognize Speech") b1.click(speech_to_text, inputs=audio_file, outputs=text) text = gr.Textbox() b2 = gr.Button("Classify Sentiment") b2.click(text_to_sentiment, inputs=text, outputs=label) label = gr.Label() demo.launch(share=True)