rajistics's picture
Added title
2044612
raw
history blame
4.08 kB
import os
os.system("pip install gradio==3.0.18")
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
import gradio as gr
import spacy
nlp = spacy.load('en_core_web_sm')
##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
text = asr(audio)["text"]
return text
def speech_to_text(speech):
text = asr(speech)["text"]
return text
##Summarization
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text(text):
resp = summarizer(text)
stext = resp[0]['summary_text']
return stext
##Fiscal Tone Analysis
fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
def text_to_sentiment(text):
sentiment = fin_model(text)[0]["label"]
return sentiment
##Company Extraction
def fin_ner(text):
api = gr.Interface.load("dslim/bert-base-NER", src='models',use_auth_token=auth_token)
replaced_spans = api(text)
return replaced_spans
##Fiscal Sentiment by Sentence
def fin_ext(text):
doc = nlp(text)
doc_sents = [sent for sent in doc.sents]
sents_list = []
for sent in doc.sents:
sents_list.append(sent.text)
results = fin_model(sents_list)
results_list = []
for i in range(len(results)):
results_list.append(results[i]['label'])
fin_spans = []
fin_spans = list(zip(sents_list,results_list))
return fin_spans
##Forward Looking Statement
def fls(text):
doc = nlp(text)
doc_sents = [sent for sent in doc.sents]
sents_list = []
for sent in doc.sents:
sents_list.append(sent.text)
fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
results = fls_model(sents_list)
results_list = []
for i in range(len(results)):
results_list.append(results[i]['label'])
fls_spans = []
fls_spans = list(zip(sents_list,results_list))
return fls_spans
demo = gr.Blocks()
with demo:
gr.Markdown("## Analyst AI")
gr.Markdown("This project applies AI trained by our financial analysts to analyze earning calls and other financial documents.")
with gr.Row():
with gr.Column():
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
with gr.Row():
b1 = gr.Button("Recognize Speech")
with gr.Row():
text = gr.Textbox(value="US retail sales fell in May for the first time in five months, restrained by a plunge in auto purchases and other big-ticket items, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding vehicles, sales rose 0.5% last month. The figures aren’t adjusted for inflation.")
b1.click(speech_to_text, inputs=audio_file, outputs=text)
with gr.Row():
b2 = gr.Button("Summarize Text")
stext = gr.Textbox()
b2.click(summarize_text, inputs=text, outputs=stext)
with gr.Row():
b3 = gr.Button("Classify Financial Tone")
label = gr.Label()
b3.click(text_to_sentiment, inputs=stext, outputs=label)
with gr.Column():
b5 = gr.Button("Financial Tone and Forward Looking Statement Analysis")
with gr.Row():
fin_spans = gr.HighlightedText()
b5.click(fin_ext, inputs=text, outputs=fin_spans)
with gr.Row():
fls_spans = gr.HighlightedText()
b5.click(fls, inputs=text, outputs=fls_spans)
with gr.Row():
b4 = gr.Button("Identify Companies & Locations")
replaced_spans = gr.HighlightedText()
b4.click(fin_ner, inputs=text, outputs=replaced_spans)
demo.launch()