rahgadda commited on
Commit
6ec7426
·
verified ·
1 Parent(s): 052b12a

Initial Draft

Browse files
Files changed (1) hide show
  1. app.py +9 -15
app.py CHANGED
@@ -3,7 +3,6 @@ import tempfile
3
  import os
4
  import re
5
  import torch
6
- from threading import Thread
7
 
8
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, TextIteratorStreamer
9
  from langchain_community.document_loaders import PyPDFLoader
@@ -52,23 +51,22 @@ def fn_generate_QnA_response(mv_selected_model, mv_user_question, lv_vector_stor
52
  print("Step4: Generating LLM response")
53
  mv_processing_message.text("Step4: Generating LLM response")
54
 
55
- lv_tokenizer = AutoTokenizer.from_pretrained(mv_selected_model, trust_remote_code=True)
56
- lv_model = AutoModelForCausalLM.from_pretrained(
57
  mv_selected_model,
58
- torch_dtype="auto",
 
 
 
 
59
  device_map="cpu",
60
  trust_remote_code=True
61
  )
62
- # lv_streamer = TextIteratorStreamer(
63
- # tokenizer=lv_tokenizer,
64
- # skip_prompt=True,
65
- # skip_special_tokens=True,
66
- # timeout=300.0
67
- # )
68
  lv_ms_phi2_pipeline = pipeline(
69
  "text-generation", tokenizer=lv_tokenizer, model=lv_model,
70
- device_map="cpu", max_new_tokens=512, return_full_text=True
 
71
  )
 
72
  lv_hf_phi2_pipeline = HuggingFacePipeline(pipeline=lv_ms_phi2_pipeline)
73
  lv_chain = ConversationalRetrievalChain.from_llm(lv_hf_phi2_pipeline, lv_vector_store.as_retriever(), return_source_documents=True)
74
  lv_response = lv_chain({"question": mv_user_question, 'chat_history': lv_chat_history})
@@ -116,9 +114,6 @@ def main():
116
  st.text("")
117
  st.text("")
118
  st.text("")
119
- st.text("")
120
- st.text("")
121
- st.text("")
122
 
123
  mv_vector_storage_dir = "/workspace/knowledge-base/01-ML/01-dev/adhoc/Talk2PDF/vector_store"
124
 
@@ -164,7 +159,6 @@ def main():
164
  st.markdown(message["content"])
165
 
166
 
167
-
168
  # Calling Main Function
169
  if __name__ == '__main__':
170
  main()
 
3
  import os
4
  import re
5
  import torch
 
6
 
7
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, TextIteratorStreamer
8
  from langchain_community.document_loaders import PyPDFLoader
 
51
  print("Step4: Generating LLM response")
52
  mv_processing_message.text("Step4: Generating LLM response")
53
 
54
+ lv_tokenizer = AutoTokenizer.from_pretrained(
 
55
  mv_selected_model,
56
+ model_max_length=2048,
57
+ trust_remote_code=True
58
+ )
59
+ lv_model = AutoModelForCausalLM.from_pretrained(
60
+ mv_selected_model,
61
  device_map="cpu",
62
  trust_remote_code=True
63
  )
 
 
 
 
 
 
64
  lv_ms_phi2_pipeline = pipeline(
65
  "text-generation", tokenizer=lv_tokenizer, model=lv_model,
66
+ pad_token_id=lv_tokenizer.eos_token_id, eos_token_id=lv_tokenizer.eos_token_id,
67
+ device_map="cpu", max_new_tokens=2048, return_full_text=True
68
  )
69
+
70
  lv_hf_phi2_pipeline = HuggingFacePipeline(pipeline=lv_ms_phi2_pipeline)
71
  lv_chain = ConversationalRetrievalChain.from_llm(lv_hf_phi2_pipeline, lv_vector_store.as_retriever(), return_source_documents=True)
72
  lv_response = lv_chain({"question": mv_user_question, 'chat_history': lv_chat_history})
 
114
  st.text("")
115
  st.text("")
116
  st.text("")
 
 
 
117
 
118
  mv_vector_storage_dir = "/workspace/knowledge-base/01-ML/01-dev/adhoc/Talk2PDF/vector_store"
119
 
 
159
  st.markdown(message["content"])
160
 
161
 
 
162
  # Calling Main Function
163
  if __name__ == '__main__':
164
  main()