Spaces:
Running
on
Zero
Running
on
Zero
rafaaa2105
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import moviepy.editor as mp
|
|
3 |
from moviepy.video.tools.subtitles import SubtitlesClip
|
4 |
from datetime import timedelta
|
5 |
import os
|
|
|
6 |
from transformers import (
|
7 |
AutoModelForSpeechSeq2Seq,
|
8 |
AutoProcessor,
|
@@ -15,6 +16,17 @@ import numpy as np
|
|
15 |
from pydub import AudioSegment
|
16 |
import spaces
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Dictionary of supported languages and their codes for MarianMT
|
19 |
LANGUAGE_CODES = {
|
20 |
"English": "en",
|
@@ -31,6 +43,7 @@ LANGUAGE_CODES = {
|
|
31 |
|
32 |
def get_model_name(source_lang, target_lang):
|
33 |
"""Get MarianMT model name for language pair"""
|
|
|
34 |
return f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
35 |
|
36 |
def format_timestamp(seconds):
|
@@ -45,51 +58,67 @@ def format_timestamp(seconds):
|
|
45 |
def translate_text(text, source_lang, target_lang):
|
46 |
"""Translate text using MarianMT"""
|
47 |
if source_lang == target_lang:
|
|
|
48 |
return text
|
49 |
|
50 |
try:
|
|
|
51 |
model_name = get_model_name(source_lang, target_lang)
|
|
|
52 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
53 |
model = MarianMTModel.from_pretrained(model_name)
|
54 |
|
|
|
55 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
56 |
translated = model.generate(**inputs)
|
57 |
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
|
|
58 |
|
59 |
return translated_text
|
60 |
except Exception as e:
|
61 |
-
|
62 |
return text
|
63 |
|
64 |
def load_audio(video_path):
|
65 |
"""Extract and load audio from video file"""
|
66 |
-
video
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
def create_srt(segments, target_lang="en"):
|
84 |
"""Convert transcribed segments to SRT format with optional translation"""
|
|
|
85 |
srt_content = ""
|
86 |
for i, segment in enumerate(segments, start=1):
|
87 |
start_time = format_timestamp(segment['start'])
|
88 |
end_time = format_timestamp(segment['end'])
|
89 |
text = segment['text'].strip()
|
90 |
|
91 |
-
|
92 |
if segment.get('language') and segment['language'] != target_lang:
|
|
|
93 |
text = translate_text(text, segment['language'], target_lang)
|
94 |
|
95 |
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
|
@@ -97,128 +126,164 @@ def create_srt(segments, target_lang="en"):
|
|
97 |
|
98 |
def create_subtitle_clips(segments, videosize, target_lang="en"):
|
99 |
"""Create subtitle clips for moviepy with translation support"""
|
|
|
100 |
subtitle_clips = []
|
101 |
|
102 |
-
for segment in segments:
|
|
|
103 |
start_time = segment['start']
|
104 |
end_time = segment['end']
|
105 |
duration = end_time - start_time
|
106 |
text = segment['text'].strip()
|
107 |
|
108 |
-
# Translate if target language is different
|
109 |
if segment.get('language') and segment['language'] != target_lang:
|
|
|
110 |
text = translate_text(text, segment['language'], target_lang)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
return subtitle_clips
|
127 |
|
128 |
@spaces.GPU
|
129 |
def process_video(video_path, target_lang="en"):
|
130 |
"""Main function to process video and add subtitles with translation"""
|
131 |
-
|
132 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
133 |
-
model_id = "nyrahealth/CrisperWhisper"
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
171 |
|
172 |
-
#
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
segments.append(current_segment)
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
segments
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
def gradio_interface(video_file, target_language):
|
215 |
"""Gradio interface function with language selection"""
|
216 |
try:
|
|
|
|
|
|
|
217 |
video_path = video_file.name
|
218 |
target_lang = LANGUAGE_CODES[target_language]
|
219 |
output_video, srt_file = process_video(video_path, target_lang)
|
|
|
|
|
220 |
return output_video, srt_file
|
221 |
except Exception as e:
|
|
|
222 |
return str(e), None
|
223 |
|
224 |
# Create Gradio interface
|
@@ -241,4 +306,5 @@ iface = gr.Interface(
|
|
241 |
)
|
242 |
|
243 |
if __name__ == "__main__":
|
|
|
244 |
iface.launch()
|
|
|
3 |
from moviepy.video.tools.subtitles import SubtitlesClip
|
4 |
from datetime import timedelta
|
5 |
import os
|
6 |
+
import logging
|
7 |
from transformers import (
|
8 |
AutoModelForSpeechSeq2Seq,
|
9 |
AutoProcessor,
|
|
|
16 |
from pydub import AudioSegment
|
17 |
import spaces
|
18 |
|
19 |
+
# Set up logging
|
20 |
+
logging.basicConfig(
|
21 |
+
level=logging.INFO,
|
22 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
23 |
+
handlers=[
|
24 |
+
logging.FileHandler('video_subtitler.log'),
|
25 |
+
logging.StreamHandler()
|
26 |
+
]
|
27 |
+
)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
# Dictionary of supported languages and their codes for MarianMT
|
31 |
LANGUAGE_CODES = {
|
32 |
"English": "en",
|
|
|
43 |
|
44 |
def get_model_name(source_lang, target_lang):
|
45 |
"""Get MarianMT model name for language pair"""
|
46 |
+
logger.info(f"Getting model name for translation from {source_lang} to {target_lang}")
|
47 |
return f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
48 |
|
49 |
def format_timestamp(seconds):
|
|
|
58 |
def translate_text(text, source_lang, target_lang):
|
59 |
"""Translate text using MarianMT"""
|
60 |
if source_lang == target_lang:
|
61 |
+
logger.info("Source and target languages are the same, skipping translation")
|
62 |
return text
|
63 |
|
64 |
try:
|
65 |
+
logger.info(f"Translating text from {source_lang} to {target_lang}")
|
66 |
model_name = get_model_name(source_lang, target_lang)
|
67 |
+
logger.info(f"Loading translation model: {model_name}")
|
68 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
69 |
model = MarianMTModel.from_pretrained(model_name)
|
70 |
|
71 |
+
logger.debug(f"Input text: {text}")
|
72 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
73 |
translated = model.generate(**inputs)
|
74 |
translated_text = tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
75 |
+
logger.debug(f"Translated text: {translated_text}")
|
76 |
|
77 |
return translated_text
|
78 |
except Exception as e:
|
79 |
+
logger.error(f"Translation error: {str(e)}", exc_info=True)
|
80 |
return text
|
81 |
|
82 |
def load_audio(video_path):
|
83 |
"""Extract and load audio from video file"""
|
84 |
+
logger.info(f"Loading audio from video: {video_path}")
|
85 |
+
try:
|
86 |
+
video = mp.VideoFileClip(video_path)
|
87 |
+
logger.info(f"Video loaded. Duration: {video.duration} seconds")
|
88 |
+
|
89 |
+
temp_audio_path = "temp_audio.wav"
|
90 |
+
logger.info(f"Extracting audio to temporary file: {temp_audio_path}")
|
91 |
+
video.audio.write_audiofile(temp_audio_path)
|
92 |
+
|
93 |
+
logger.info("Loading audio file with pydub")
|
94 |
+
audio = AudioSegment.from_wav(temp_audio_path)
|
95 |
+
audio_array = np.array(audio.get_array_of_samples())
|
96 |
+
|
97 |
+
logger.info("Converting audio to float32 and normalizing")
|
98 |
+
audio_array = audio_array.astype(np.float32) / np.iinfo(np.int16).max
|
99 |
+
|
100 |
+
if len(audio_array.shape) > 1:
|
101 |
+
logger.info("Converting stereo to mono")
|
102 |
+
audio_array = audio_array.mean(axis=1)
|
103 |
+
|
104 |
+
logger.info(f"Audio loaded successfully. Shape: {audio_array.shape}, Sample rate: {audio.frame_rate}")
|
105 |
+
return audio_array, audio.frame_rate, video, temp_audio_path
|
106 |
+
except Exception as e:
|
107 |
+
logger.error(f"Error loading audio: {str(e)}", exc_info=True)
|
108 |
+
raise
|
109 |
|
110 |
def create_srt(segments, target_lang="en"):
|
111 |
"""Convert transcribed segments to SRT format with optional translation"""
|
112 |
+
logger.info(f"Creating SRT content for {len(segments)} segments")
|
113 |
srt_content = ""
|
114 |
for i, segment in enumerate(segments, start=1):
|
115 |
start_time = format_timestamp(segment['start'])
|
116 |
end_time = format_timestamp(segment['end'])
|
117 |
text = segment['text'].strip()
|
118 |
|
119 |
+
logger.debug(f"Processing segment {i}: {start_time} --> {end_time}")
|
120 |
if segment.get('language') and segment['language'] != target_lang:
|
121 |
+
logger.info(f"Translating segment {i}")
|
122 |
text = translate_text(text, segment['language'], target_lang)
|
123 |
|
124 |
srt_content += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
|
|
|
126 |
|
127 |
def create_subtitle_clips(segments, videosize, target_lang="en"):
|
128 |
"""Create subtitle clips for moviepy with translation support"""
|
129 |
+
logger.info(f"Creating subtitle clips for {len(segments)} segments")
|
130 |
subtitle_clips = []
|
131 |
|
132 |
+
for i, segment in enumerate(segments):
|
133 |
+
logger.debug(f"Processing subtitle clip {i}")
|
134 |
start_time = segment['start']
|
135 |
end_time = segment['end']
|
136 |
duration = end_time - start_time
|
137 |
text = segment['text'].strip()
|
138 |
|
|
|
139 |
if segment.get('language') and segment['language'] != target_lang:
|
140 |
+
logger.info(f"Translating subtitle {i}")
|
141 |
text = translate_text(text, segment['language'], target_lang)
|
142 |
|
143 |
+
try:
|
144 |
+
text_clip = mp.TextClip(
|
145 |
+
text,
|
146 |
+
font='Arial',
|
147 |
+
fontsize=24,
|
148 |
+
color='white',
|
149 |
+
stroke_color='black',
|
150 |
+
stroke_width=1,
|
151 |
+
size=videosize,
|
152 |
+
method='caption'
|
153 |
+
).set_position(('center', 'bottom'))
|
154 |
+
|
155 |
+
text_clip = text_clip.set_start(start_time).set_duration(duration)
|
156 |
+
subtitle_clips.append(text_clip)
|
157 |
+
except Exception as e:
|
158 |
+
logger.error(f"Error creating subtitle clip {i}: {str(e)}", exc_info=True)
|
159 |
|
160 |
return subtitle_clips
|
161 |
|
162 |
@spaces.GPU
|
163 |
def process_video(video_path, target_lang="en"):
|
164 |
"""Main function to process video and add subtitles with translation"""
|
165 |
+
logger.info(f"Starting video processing: {video_path}")
|
|
|
|
|
166 |
|
167 |
+
try:
|
168 |
+
# Set up device
|
169 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
170 |
+
logger.info(f"Using device: {device}")
|
171 |
+
|
172 |
+
# Load CrisperWhisper model
|
173 |
+
model_id = "nyrahealth/CrisperWhisper"
|
174 |
+
logger.info(f"Loading CrisperWhisper model: {model_id}")
|
175 |
+
|
176 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
177 |
+
model_id,
|
178 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
179 |
+
low_cpu_mem_usage=True,
|
180 |
+
use_safetensors=True
|
181 |
+
).to(device)
|
182 |
+
|
183 |
+
logger.info("Loading processor")
|
184 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
185 |
+
|
186 |
+
# Load audio and video
|
187 |
+
logger.info("Loading audio from video")
|
188 |
+
audio_array, sampling_rate, video, temp_audio_path = load_audio(video_path)
|
189 |
+
|
190 |
+
# Create pipeline
|
191 |
+
logger.info("Creating ASR pipeline")
|
192 |
+
pipe = pipeline(
|
193 |
+
"automatic-speech-recognition",
|
194 |
+
model=model,
|
195 |
+
tokenizer=processor.tokenizer,
|
196 |
+
feature_extractor=processor.feature_extractor,
|
197 |
+
max_new_tokens=128,
|
198 |
+
chunk_length_s=30,
|
199 |
+
batch_size=16,
|
200 |
+
return_timestamps=True,
|
201 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
202 |
+
device=device,
|
203 |
+
)
|
204 |
|
205 |
+
# Transcribe audio
|
206 |
+
logger.info("Starting transcription")
|
207 |
+
result = pipe(audio_array, return_timestamps="word")
|
208 |
+
logger.info("Transcription completed")
|
209 |
+
logger.debug(f"Transcription result: {result}")
|
210 |
+
|
211 |
+
# Convert word-level timestamps to segments
|
212 |
+
logger.info("Converting word-level timestamps to segments")
|
213 |
+
segments = []
|
214 |
+
current_segment = {"text": "", "start": result["chunks"][0]["timestamp"][0]}
|
215 |
+
|
216 |
+
for chunk in result["chunks"]:
|
217 |
+
current_segment["text"] += " " + chunk["text"]
|
218 |
+
current_segment["end"] = chunk["timestamp"][1]
|
219 |
+
|
220 |
+
if len(current_segment["text"].split()) > 10 or \
|
221 |
+
(current_segment["end"] - current_segment["start"]) > 5.0:
|
222 |
+
segments.append(current_segment)
|
223 |
+
if chunk != result["chunks"][-1]:
|
224 |
+
current_segment = {"text": "", "start": chunk["timestamp"][1]}
|
225 |
+
|
226 |
+
if current_segment["text"]:
|
227 |
segments.append(current_segment)
|
228 |
+
|
229 |
+
logger.info(f"Created {len(segments)} segments")
|
230 |
+
|
231 |
+
# Add detected language
|
232 |
+
detected_language = "en"
|
233 |
+
for segment in segments:
|
234 |
+
segment['language'] = detected_language
|
235 |
+
|
236 |
+
# Create SRT content
|
237 |
+
logger.info("Creating SRT content")
|
238 |
+
srt_content = create_srt(segments, target_lang)
|
239 |
+
|
240 |
+
# Save SRT file
|
241 |
+
video_name = os.path.splitext(os.path.basename(video_path))[0]
|
242 |
+
srt_path = f"{video_name}_subtitles_{target_lang}.srt"
|
243 |
+
logger.info(f"Saving SRT file: {srt_path}")
|
244 |
+
with open(srt_path, "w", encoding="utf-8") as f:
|
245 |
+
f.write(srt_content)
|
246 |
+
|
247 |
+
# Create subtitle clips
|
248 |
+
logger.info("Creating subtitle clips")
|
249 |
+
subtitle_clips = create_subtitle_clips(segments, video.size, target_lang)
|
250 |
+
|
251 |
+
# Combine video with subtitles
|
252 |
+
logger.info("Combining video with subtitles")
|
253 |
+
final_video = mp.CompositeVideoClip([video] + subtitle_clips)
|
254 |
+
|
255 |
+
# Save final video
|
256 |
+
output_video_path = f"{video_name}_with_subtitles_{target_lang}.mp4"
|
257 |
+
logger.info(f"Saving final video: {output_video_path}")
|
258 |
+
final_video.write_videofile(output_video_path)
|
259 |
+
|
260 |
+
# Clean up
|
261 |
+
logger.info("Cleaning up temporary files")
|
262 |
+
os.remove(temp_audio_path)
|
263 |
+
video.close()
|
264 |
+
final_video.close()
|
265 |
+
|
266 |
+
logger.info("Video processing completed successfully")
|
267 |
+
return output_video_path, srt_path
|
268 |
+
|
269 |
+
except Exception as e:
|
270 |
+
logger.error(f"Error in video processing: {str(e)}", exc_info=True)
|
271 |
+
raise
|
272 |
|
273 |
def gradio_interface(video_file, target_language):
|
274 |
"""Gradio interface function with language selection"""
|
275 |
try:
|
276 |
+
logger.info(f"Processing new video request: {video_file.name}")
|
277 |
+
logger.info(f"Target language: {target_language}")
|
278 |
+
|
279 |
video_path = video_file.name
|
280 |
target_lang = LANGUAGE_CODES[target_language]
|
281 |
output_video, srt_file = process_video(video_path, target_lang)
|
282 |
+
|
283 |
+
logger.info("Processing completed successfully")
|
284 |
return output_video, srt_file
|
285 |
except Exception as e:
|
286 |
+
logger.error(f"Error in Gradio interface: {str(e)}", exc_info=True)
|
287 |
return str(e), None
|
288 |
|
289 |
# Create Gradio interface
|
|
|
306 |
)
|
307 |
|
308 |
if __name__ == "__main__":
|
309 |
+
logger.info("Starting Video Subtitler application")
|
310 |
iface.launch()
|