rafaaa2105's picture
Update app.py
c576f11 verified
raw
history blame
3.17 kB
import torch
from diffusers import DiffusionPipeline
import gradio as gr
import os
import spaces
# Load the models outside of the generate_images function
model_list = [model.strip() for model in os.environ.get("MODELS").split(",")]
lora_list = [model.strip() for model in os.environ.get("LORAS").split(",")]
print(f"Detected {len(model_list)} on models and {len(lora_list)} LoRAs.")
models = {}
for model_name in model_list:
try:
print(f"\n\nLoading {model_name}...")
models[model_name] = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.float16).to("cuda")
except Exception as e:
print(f"Error loading model {model_name}: {e}")
@spaces.GPU
def generate_images(
model_name,
prompt,
negative_prompt,
num_inference_steps,
guidance_scale,
height,
width,
num_images=4,
progress=gr.Progress(track_tqdm=True)
):
if prompt is not None and prompt.strip() != "":
pipe = models.get(model_name)
if pipe is None:
return []
print(f"Prompt is: [ {prompt} ]")
outputs = []
for _ in range(num_images):
output = pipe(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width
)["images"][0]
outputs.append(output)
return outputs
else:
gr.Warning("Prompt empty!")
# Create the Gradio blocks
with gr.Blocks() as demo:
with gr.Row(equal_height=False):
with gr.Column():
with gr.Group():
model_dropdown = gr.Dropdown(choices=list(models.keys()), value=model_list[0] if model_list else None, label="Model")
prompt = gr.Textbox(label="Prompt")
generate_btn = gr.Button("Generate Image")
with gr.Accordion("Advanced", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
num_inference_steps = gr.Slider(minimum=10, maximum=50, step=1, value=25, label="Number of Inference Steps")
guidance_scale = gr.Slider(minimum=1, maximum=20, step=0.5, value=7.5, label="Guidance Scale")
height = gr.Slider(minimum=1024, maximum=2048, step=256, value=1024, label="Height")
width = gr.Slider(minimum=1024, maximum=2048, step=256, value=1024, label="Width")
num_images = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images")
with gr.Column():
output_gallery = gr.Gallery(label="Generated Images", height=480, scale=1)
generate_btn.click(generate_images, inputs=[model_dropdown, prompt, negative_prompt, num_inference_steps, guidance_scale, height, width, num_images], outputs=output_gallery)
demo.launch()