Spaces:
Sleeping
Sleeping
import torch | |
from diffusers import DiffusionPipeline | |
import gradio as gr | |
import os | |
import spaces | |
model_list = [model.strip() for model in os.environ.get("MODELS").split(",")] | |
lora_list = [model.strip() for model in os.environ.get("LORAS").split(",")] | |
models = {} | |
for model_name in model_list: | |
try: | |
models[model_name] = DiffusionPipeline.from_pretrained(model_name).to("cuda") | |
except Exception as e: | |
print(f"Error loading model {model_name}: {e}") | |
def generate_image(model_name, prompt, negative_prompt, num_inference_steps, guidance_scale): | |
pipe = models[model_name] | |
output = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)["images"][0] | |
return output | |
# Create the Gradio blocks | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
model_dropdown = gr.Dropdown(choices=list(models.keys()), value=model_list[0] if model_list else None, label="Model") | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt", value="") | |
num_inference_steps = gr.Slider(minimum=10, maximum=50, step=1, value=25, label="Number of Inference Steps") | |
guidance_scale = gr.Slider(minimum=1, maximum=20, step=0.5, value=7.5, label="Guidance Scale") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
generate_btn = gr.Button("Generate Image") | |
generate_btn.click(generate_image, inputs=[model_dropdown, prompt, negative_prompt, num_inference_steps, guidance_scale], outputs=output_image) | |
demo.launch() |