File size: 2,349 Bytes
0925cf1
40822a4
c63d488
0925cf1
8ef1d5d
0925cf1
9da8ea8
 
 
82d2444
a17e285
92ec9db
 
40822a4
92ec9db
 
0925cf1
82d2444
a17e285
b282552
92ec9db
b282552
 
 
 
 
 
f8913d8
82d2444
 
92ec9db
0925cf1
a031477
 
 
82d2444
 
44549ae
 
 
 
b282552
82d2444
 
7a2c267
726ecc0
82d2444
 
b282552
8ef1d5d
82d2444
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from diffusers import DiffusionPipeline
import gradio as gr
import os
import spaces

model_list = [model.strip() for model in os.environ.get("MODELS").split(",")]
lora_list = [model.strip() for model in os.environ.get("LORAS").split(",")]


models = {}
for model_name in model_list:
    try:
        models[model_name] = DiffusionPipeline.from_pretrained(model_name).to("cuda")
    except Exception as e:
        print(f"Error loading model {model_name}: {e}")


@spaces.GPU
def generate_images(model_name, prompt, negative_prompt, num_inference_steps, guidance_scale, num_images=4):
    pipe = models[model_name]
    outputs = []
    for _ in range(num_images):
        output = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)["images"][0]
        outputs.append(output)
    return outputs


    

# Create the Gradio blocks
with gr.Blocks() as demo:
    with gr.Row(equal_height=False):
        with gr.Group():
            with gr.Column():
                model_dropdown = gr.Dropdown(choices=list(models.keys()), value=model_list[0] if model_list else None, label="Model")
                prompt = gr.Textbox(label="Prompt")
                with gr.Accordion("Advanced"):
                    negative_prompt = gr.Textbox(label="Negative Prompt", value="nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], kid, kid looking, child, childish look")
                    num_inference_steps = gr.Slider(minimum=10, maximum=50, step=1, value=25, label="Number of Inference Steps")
                    guidance_scale = gr.Slider(minimum=1, maximum=20, step=0.5, value=7.5, label="Guidance Scale")
                    num_images = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images")
                generate_btn = gr.Button("Generate Image")
                
        with gr.Column():
            output_image = gr.Image(label="Generated Image", height=480, scale=1)
            

    generate_btn.click(generate_image, inputs=[model_dropdown, prompt, negative_prompt, num_inference_steps, guidance_scale, num_images], outputs=output_image)

demo.launch()