Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import moviepy.editor as mp | |
from deep_translator import GoogleTranslator | |
from pydub import AudioSegment | |
import os | |
import tempfile | |
import torch | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import spaces | |
import pytube | |
import librosa | |
# Add the LANGUAGES dictionary | |
LANGUAGES = { | |
"en": "eng", | |
"zh": "zho", | |
"de": "deu", | |
"es": "spa", | |
"ru": "rus", | |
"ko": "kor", | |
"fr": "fra", | |
"ja": "jpn", | |
"pt": "por", | |
"tr": "tur", | |
"pl": "pol", | |
"ca": "cat", | |
"nl": "nld", | |
"ar": "ara", | |
"sv": "swe", | |
"it": "ita", | |
"id": "ind", | |
"hi": "hin", | |
"fi": "fin", | |
"vi": "vie", | |
"iw": "heb", | |
"uk": "ukr", | |
"el": "ell", | |
"ms": "msa", | |
"cs": "ces", | |
"ro": "ron", | |
"da": "dan", | |
"hu": "hun", | |
"ta": "tam", | |
"no": "nor", | |
"th": "tha", | |
"ur": "urd", | |
"hr": "hrv", | |
"bg": "bul", | |
"lt": "lit", | |
"la": "lat", | |
"mi": "mri", | |
"ml": "mal", | |
"cy": "cym", | |
"sk": "slk", | |
"te": "tel", | |
"fa": "fas", | |
"lv": "lav", | |
"bn": "ben", | |
"sr": "srp", | |
"az": "aze", | |
"sl": "slv", | |
"kn": "kan", | |
"et": "est", | |
"mk": "mkd", | |
"br": "bre", | |
"eu": "eus", | |
"is": "isl", | |
"hy": "hye", | |
"ne": "nep", | |
"mn": "mon", | |
"bs": "bos", | |
"kk": "kaz", | |
"sq": "sqi", | |
"sw": "swa", | |
"gl": "glg", | |
"mr": "mar", | |
"pa": "pan", | |
"si": "sin", | |
"km": "khm", | |
"sn": "sna", | |
"yo": "yor", | |
"so": "som", | |
"af": "afr", | |
"oc": "oci", | |
"ka": "kat", | |
"be": "bel", | |
"tg": "tgk", | |
"sd": "snd", | |
"gu": "guj", | |
"am": "amh", | |
"yi": "yid", | |
"lo": "lao", | |
"uz": "uzb", | |
"fo": "fao", | |
"ht": "hat", | |
"ps": "pus", | |
"tk": "tuk", | |
"nn": "nno", | |
"mt": "mlt", | |
"sa": "san", | |
"lb": "ltz", | |
"my": "mya", | |
"bo": "bod", | |
"tl": "tgl", | |
"mg": "mlg", | |
"as": "asm", | |
"tt": "tat", | |
"haw": "haw", | |
"ln": "lin", | |
"ha": "hau", | |
"ba": "bak", | |
"jw": "jav", | |
"su": "sun", | |
} | |
def extract_audio(video_path): | |
video = mp.VideoFileClip(video_path) | |
audio = video.audio | |
audio_path = tempfile.mktemp(suffix=".wav") | |
audio.write_audiofile(audio_path) | |
return audio_path | |
def generate_subtitles(audio_path): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3").to(device) | |
# Load and preprocess the audio | |
audio_input, _ = librosa.load(audio_path, sr=16000) | |
input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features.to(device) | |
# Generate token ids | |
predicted_ids = model.generate(input_features) | |
# Decode token ids to text | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# For simplicity, we're returning a single segment with the full transcription | |
# In a more advanced implementation, you might want to split this into multiple segments | |
return [{"start": 0, "end": len(audio_input) / 16000, "text": transcription[0]}] | |
def translate_subtitles(subtitles, target_language): | |
# Use the LANGUAGES dictionary to get the full language name | |
target_lang_code = next((k for k, v in LANGUAGES.items() if v == target_language), target_language) | |
translator = GoogleTranslator(source='auto', target=target_lang_code) | |
translated_subtitles = [] | |
for segment in subtitles: | |
translated_text = translator.translate(segment["text"]) | |
translated_subtitles.append({ | |
"start": segment["start"], | |
"end": segment["end"], | |
"text": translated_text | |
}) | |
return translated_subtitles | |
def add_subtitles_to_video(video_path, subtitles, output_path): | |
video = mp.VideoFileClip(video_path) | |
subtitles_clips = [ | |
mp.TextClip(txt=subtitle["text"], fontsize=24, color='white', bg_color='black', font='Arial') | |
.set_position(('center', 'bottom')) | |
.set_duration(subtitle["end"] - subtitle["start"]) | |
.set_start(subtitle["start"]) | |
for subtitle in subtitles | |
] | |
final_video = mp.CompositeVideoClip([video] + subtitles_clips) | |
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac") | |
def process_video(video_path, target_language): | |
# Extract audio from video | |
audio_path = extract_audio(video_path) | |
# Generate subtitles using Whisper | |
subtitles = generate_subtitles(audio_path) | |
# Translate subtitles | |
translated_subtitles = translate_subtitles(subtitles, target_language) | |
# Add translated subtitles to video | |
output_path = tempfile.mktemp(suffix=".mp4") | |
add_subtitles_to_video(video_path, translated_subtitles, output_path) | |
return output_path | |
def download_youtube_video(youtube_link): | |
yt = pytube.YouTube(youtube_link) | |
video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() | |
video_path = video.download(output_path=tempfile.gettempdir()) | |
return video_path | |
def gradio_interface(video, yt_link, target_language): | |
if video is not None: | |
video_path = video.name | |
elif yt_link: | |
video_path = download_youtube_video(yt_link) | |
else: | |
raise ValueError("Please provide either a video file or a YouTube link.") | |
output_video = process_video(video_path, target_language) | |
return output_video | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Video(label="Upload Video"), | |
gr.Textbox(label="YouTube Link"), | |
gr.Dropdown(choices=list(LANGUAGES.values()), label="Target Language") | |
], | |
outputs=gr.Video(label="Processed Video"), | |
title="Video Subtitle Translator", | |
description="Upload a video or provide a YouTube link, and get it back with translated subtitles!" | |
) | |
iface.launch() |