radames's picture
bump gradio version, enable cache
1acd386
raw
history blame
4.89 kB
from email.policy import default
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path
import os
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
def process_image(image_path, voxel_s):
voxel_s = max(voxel_s/500, 0.0001)
image_path = Path(image_path)
image_raw = Image.open(image_path)
image = image_raw.resize(
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
Image.Resampling.LANCZOS)
# prepare image for the model
encoding = feature_extractor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**encoding)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
depth_image = (output * 255 / np.max(output)).astype('uint8')
try:
gltf_path = create_3d_voxels_obj(
np.array(image), depth_image, image_path, voxel_s)
img = Image.fromarray(depth_image)
return [img, gltf_path, gltf_path]
except Exception as e:
print("Error reconstructing 3D model")
raise Exception("Error reconstructing 3D model")
def create_3d_voxels_obj(rgb_image, depth_image, image_path, voxel_s):
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(rgb_image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
w = int(depth_image.shape[1])
h = int(depth_image.shape[0])
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image, camera_intrinsic)
print('normals')
pcd.normals = o3d.utility.Vector3dVector(
np.zeros((1, 3))) # invalidate existing normals
pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
pcd.orient_normals_towards_camera_location(
camera_location=np.array([0., 0., 1000.]))
pcd.transform([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
pcd.transform([[-1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
print('voxels')
# ref https://towardsdatascience.com/how-to-automate-voxel-modelling-of-3d-point-cloud-with-python-459f4d43a227
voxel_size = round(
max(pcd.get_max_bound()-pcd.get_min_bound())*voxel_s, 10)
print("Voxel size", voxel_size, "voxel_s", voxel_s)
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(
pcd, voxel_size=voxel_size)
voxels = voxel_grid.get_voxels()
vox_mesh = o3d.geometry.TriangleMesh()
for v in voxels:
cube = o3d.geometry.TriangleMesh.create_box(width=1, height=1, depth=1)
cube.paint_uniform_color(v.color)
cube.translate(v.grid_index, relative=False)
vox_mesh += cube
print(voxel_grid, vox_mesh)
gltf_path = f'./{image_path.stem}.gltf'
o3d.io.write_triangle_mesh(gltf_path, vox_mesh, write_triangle_uvs=True)
return gltf_path
title = "Demo: zero-shot depth estimation with DPT + 3D Voxels reconstruction"
description = "This demo is a variation from the original <a href='https://huggingface.co./spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then reconstruct the 3D model as voxels."
examples = [["examples/" + img, 10] for img in os.listdir("examples/")]
iface = gr.Interface(fn=process_image,
inputs=[
gr.inputs.Image(
type="filepath", label="Input Image"),
gr.inputs.Slider(
5, 100, step=1, label="Voxel Size", default=10)
],
outputs=[
gr.outputs.Image(label="predicted depth", type="pil"),
gr.outputs.Image3D(label="3d mesh reconstruction", clear_color=[
1.0, 1.0, 1.0, 1.0]),
gr.outputs.File(label="3d gLTF")
],
title=title,
description=description,
examples=examples,
allow_flagging="never")
iface.launch(debug=True, enable_queue=False, cache_examples=True)