Spaces:
Running
on
A100
Running
on
A100
controlnetLoraSD15.py
Browse files
frontend/src/lib/components/PipelineOptions.svelte
CHANGED
@@ -6,6 +6,7 @@
|
|
6 |
import SeedInput from './SeedInput.svelte';
|
7 |
import TextArea from './TextArea.svelte';
|
8 |
import Checkbox from './Checkbox.svelte';
|
|
|
9 |
import { pipelineValues } from '$lib/store';
|
10 |
|
11 |
export let pipelineParams: FieldProps[];
|
@@ -25,6 +26,8 @@
|
|
25 |
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
26 |
{:else if params.field === FieldType.CHECKBOX}
|
27 |
<Checkbox {params} bind:value={$pipelineValues[params.id]}></Checkbox>
|
|
|
|
|
28 |
{/if}
|
29 |
{/each}
|
30 |
{/if}
|
@@ -45,6 +48,8 @@
|
|
45 |
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
46 |
{:else if params.field === FieldType.CHECKBOX}
|
47 |
<Checkbox {params} bind:value={$pipelineValues[params.id]}></Checkbox>
|
|
|
|
|
48 |
{/if}
|
49 |
{/each}
|
50 |
{/if}
|
|
|
6 |
import SeedInput from './SeedInput.svelte';
|
7 |
import TextArea from './TextArea.svelte';
|
8 |
import Checkbox from './Checkbox.svelte';
|
9 |
+
import Selectlist from './Selectlist.svelte';
|
10 |
import { pipelineValues } from '$lib/store';
|
11 |
|
12 |
export let pipelineParams: FieldProps[];
|
|
|
26 |
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
27 |
{:else if params.field === FieldType.CHECKBOX}
|
28 |
<Checkbox {params} bind:value={$pipelineValues[params.id]}></Checkbox>
|
29 |
+
{:else if params.field === FieldType.SELECT}
|
30 |
+
<Selectlist {params} bind:value={$pipelineValues[params.id]}></Selectlist>
|
31 |
{/if}
|
32 |
{/each}
|
33 |
{/if}
|
|
|
48 |
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
49 |
{:else if params.field === FieldType.CHECKBOX}
|
50 |
<Checkbox {params} bind:value={$pipelineValues[params.id]}></Checkbox>
|
51 |
+
{:else if params.field === FieldType.SELECT}
|
52 |
+
<Selectlist {params} bind:value={$pipelineValues[params.id]}></Selectlist>
|
53 |
{/if}
|
54 |
{/each}
|
55 |
{/if}
|
frontend/src/lib/components/Selectlist.svelte
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<script lang="ts">
|
2 |
+
import type { FieldProps } from '$lib/types';
|
3 |
+
import { onMount } from 'svelte';
|
4 |
+
export let value = '';
|
5 |
+
export let params: FieldProps;
|
6 |
+
onMount(() => {
|
7 |
+
value = String(params?.default);
|
8 |
+
});
|
9 |
+
</script>
|
10 |
+
|
11 |
+
<div class="grid max-w-md grid-cols-4 items-center justify-items-start gap-3">
|
12 |
+
<label for="model-list" class="font-medium">{params?.title} </label>
|
13 |
+
{#if params?.values}
|
14 |
+
<select
|
15 |
+
bind:value
|
16 |
+
id="model-list"
|
17 |
+
class="cursor-pointer rounded-md border-2 border-gray-500 p-2 font-light dark:text-black"
|
18 |
+
>
|
19 |
+
{#each params.values as model, i}
|
20 |
+
<option value={model} selected={i === 0}>{model}</option>
|
21 |
+
{/each}
|
22 |
+
</select>
|
23 |
+
{/if}
|
24 |
+
</div>
|
frontend/src/lib/lcmLive.ts
CHANGED
@@ -36,7 +36,6 @@ export const lcmLiveActions = {
|
|
36 |
};
|
37 |
websocket.onmessage = (event) => {
|
38 |
const data = JSON.parse(event.data);
|
39 |
-
console.log("WS: ", data);
|
40 |
switch (data.status) {
|
41 |
case "connected":
|
42 |
const userId = data.userId;
|
|
|
36 |
};
|
37 |
websocket.onmessage = (event) => {
|
38 |
const data = JSON.parse(event.data);
|
|
|
39 |
switch (data.status) {
|
40 |
case "connected":
|
41 |
const userId = data.userId;
|
frontend/src/lib/types.ts
CHANGED
@@ -3,6 +3,7 @@ export const enum FieldType {
|
|
3 |
SEED = "seed",
|
4 |
TEXTAREA = "textarea",
|
5 |
CHECKBOX = "checkbox",
|
|
|
6 |
}
|
7 |
export const enum PipelineMode {
|
8 |
IMAGE = "image",
|
@@ -20,6 +21,7 @@ export interface FieldProps {
|
|
20 |
disabled?: boolean;
|
21 |
hide?: boolean;
|
22 |
id: string;
|
|
|
23 |
}
|
24 |
export interface PipelineInfo {
|
25 |
title: {
|
|
|
3 |
SEED = "seed",
|
4 |
TEXTAREA = "textarea",
|
5 |
CHECKBOX = "checkbox",
|
6 |
+
SELECT = "select",
|
7 |
}
|
8 |
export const enum PipelineMode {
|
9 |
IMAGE = "image",
|
|
|
21 |
disabled?: boolean;
|
22 |
hide?: boolean;
|
23 |
id: string;
|
24 |
+
values?: string[];
|
25 |
}
|
26 |
export interface PipelineInfo {
|
27 |
title: {
|
frontend/src/routes/+page.svelte
CHANGED
@@ -9,12 +9,7 @@
|
|
9 |
import PipelineOptions from '$lib/components/PipelineOptions.svelte';
|
10 |
import Spinner from '$lib/icons/spinner.svelte';
|
11 |
import { lcmLiveStatus, lcmLiveActions, LCMLiveStatus } from '$lib/lcmLive';
|
12 |
-
import {
|
13 |
-
mediaStreamActions,
|
14 |
-
mediaStreamStatus,
|
15 |
-
onFrameChangeStore,
|
16 |
-
MediaStreamStatusEnum
|
17 |
-
} from '$lib/mediaStream';
|
18 |
import { getPipelineValues, deboucedPipelineValues } from '$lib/store';
|
19 |
|
20 |
let pipelineParams: FieldProps[];
|
@@ -44,9 +39,7 @@
|
|
44 |
}
|
45 |
|
46 |
$: isLCMRunning = $lcmLiveStatus !== LCMLiveStatus.DISCONNECTED;
|
47 |
-
|
48 |
-
console.log('lcmLiveStatus', $lcmLiveStatus);
|
49 |
-
}
|
50 |
let disabled = false;
|
51 |
async function toggleLcmLive() {
|
52 |
if (!isLCMRunning) {
|
|
|
9 |
import PipelineOptions from '$lib/components/PipelineOptions.svelte';
|
10 |
import Spinner from '$lib/icons/spinner.svelte';
|
11 |
import { lcmLiveStatus, lcmLiveActions, LCMLiveStatus } from '$lib/lcmLive';
|
12 |
+
import { mediaStreamActions, onFrameChangeStore } from '$lib/mediaStream';
|
|
|
|
|
|
|
|
|
|
|
13 |
import { getPipelineValues, deboucedPipelineValues } from '$lib/store';
|
14 |
|
15 |
let pipelineParams: FieldProps[];
|
|
|
39 |
}
|
40 |
|
41 |
$: isLCMRunning = $lcmLiveStatus !== LCMLiveStatus.DISCONNECTED;
|
42 |
+
|
|
|
|
|
43 |
let disabled = false;
|
44 |
async function toggleLcmLive() {
|
45 |
if (!isLCMRunning) {
|
pipelines/controlnetLoraSD15.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
3 |
+
ControlNetModel,
|
4 |
+
LCMScheduler,
|
5 |
+
)
|
6 |
+
from compel import Compel
|
7 |
+
import torch
|
8 |
+
from pipelines.utils.canny_gpu import SobelOperator
|
9 |
+
|
10 |
+
try:
|
11 |
+
import intel_extension_for_pytorch as ipex # type: ignore
|
12 |
+
except:
|
13 |
+
pass
|
14 |
+
|
15 |
+
import psutil
|
16 |
+
from config import Args
|
17 |
+
from pydantic import BaseModel, Field
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
taesd_model = "madebyollin/taesd"
|
21 |
+
controlnet_model = "lllyasviel/control_v11p_sd15_canny"
|
22 |
+
base_models = [
|
23 |
+
"plasmo/woolitize",
|
24 |
+
"nitrosocke/Ghibli-Diffusion",
|
25 |
+
"nitrosocke/mo-di-diffusion",
|
26 |
+
]
|
27 |
+
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
28 |
+
|
29 |
+
|
30 |
+
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
31 |
+
|
32 |
+
|
33 |
+
class Pipeline:
|
34 |
+
class Info(BaseModel):
|
35 |
+
name: str = "controlnet+loras+sd15"
|
36 |
+
title: str = "LCM + LoRA + Controlnet "
|
37 |
+
description: str = "Generates an image from a text prompt"
|
38 |
+
input_mode: str = "image"
|
39 |
+
|
40 |
+
class InputParams(BaseModel):
|
41 |
+
prompt: str = Field(
|
42 |
+
default_prompt,
|
43 |
+
title="Prompt",
|
44 |
+
field="textarea",
|
45 |
+
id="prompt",
|
46 |
+
)
|
47 |
+
model_id: str = Field(
|
48 |
+
"plasmo/woolitize",
|
49 |
+
title="Base Models List",
|
50 |
+
values=base_models,
|
51 |
+
field="select",
|
52 |
+
id="model_id",
|
53 |
+
)
|
54 |
+
seed: int = Field(
|
55 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
56 |
+
)
|
57 |
+
steps: int = Field(
|
58 |
+
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
59 |
+
)
|
60 |
+
width: int = Field(
|
61 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
62 |
+
)
|
63 |
+
height: int = Field(
|
64 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
65 |
+
)
|
66 |
+
guidance_scale: float = Field(
|
67 |
+
0.2,
|
68 |
+
min=0,
|
69 |
+
max=2,
|
70 |
+
step=0.001,
|
71 |
+
title="Guidance Scale",
|
72 |
+
field="range",
|
73 |
+
hide=True,
|
74 |
+
id="guidance_scale",
|
75 |
+
)
|
76 |
+
strength: float = Field(
|
77 |
+
0.5,
|
78 |
+
min=0.25,
|
79 |
+
max=1.0,
|
80 |
+
step=0.001,
|
81 |
+
title="Strength",
|
82 |
+
field="range",
|
83 |
+
hide=True,
|
84 |
+
id="strength",
|
85 |
+
)
|
86 |
+
controlnet_scale: float = Field(
|
87 |
+
0.8,
|
88 |
+
min=0,
|
89 |
+
max=1.0,
|
90 |
+
step=0.001,
|
91 |
+
title="Controlnet Scale",
|
92 |
+
field="range",
|
93 |
+
hide=True,
|
94 |
+
id="controlnet_scale",
|
95 |
+
)
|
96 |
+
controlnet_start: float = Field(
|
97 |
+
0.0,
|
98 |
+
min=0,
|
99 |
+
max=1.0,
|
100 |
+
step=0.001,
|
101 |
+
title="Controlnet Start",
|
102 |
+
field="range",
|
103 |
+
hide=True,
|
104 |
+
id="controlnet_start",
|
105 |
+
)
|
106 |
+
controlnet_end: float = Field(
|
107 |
+
1.0,
|
108 |
+
min=0,
|
109 |
+
max=1.0,
|
110 |
+
step=0.001,
|
111 |
+
title="Controlnet End",
|
112 |
+
field="range",
|
113 |
+
hide=True,
|
114 |
+
id="controlnet_end",
|
115 |
+
)
|
116 |
+
canny_low_threshold: float = Field(
|
117 |
+
0.31,
|
118 |
+
min=0,
|
119 |
+
max=1.0,
|
120 |
+
step=0.001,
|
121 |
+
title="Canny Low Threshold",
|
122 |
+
field="range",
|
123 |
+
hide=True,
|
124 |
+
id="canny_low_threshold",
|
125 |
+
)
|
126 |
+
canny_high_threshold: float = Field(
|
127 |
+
0.125,
|
128 |
+
min=0,
|
129 |
+
max=1.0,
|
130 |
+
step=0.001,
|
131 |
+
title="Canny High Threshold",
|
132 |
+
field="range",
|
133 |
+
hide=True,
|
134 |
+
id="canny_high_threshold",
|
135 |
+
)
|
136 |
+
debug_canny: bool = Field(
|
137 |
+
False,
|
138 |
+
title="Debug Canny",
|
139 |
+
field="checkbox",
|
140 |
+
hide=True,
|
141 |
+
id="debug_canny",
|
142 |
+
)
|
143 |
+
|
144 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
145 |
+
controlnet_canny = ControlNetModel.from_pretrained(
|
146 |
+
controlnet_model, torch_dtype=torch_dtype
|
147 |
+
).to(device)
|
148 |
+
|
149 |
+
self.pipes = {}
|
150 |
+
|
151 |
+
if args.safety_checker:
|
152 |
+
for model_id in base_models:
|
153 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
154 |
+
model_id,
|
155 |
+
controlnet=controlnet_canny,
|
156 |
+
)
|
157 |
+
self.pipes[model_id] = pipe
|
158 |
+
else:
|
159 |
+
for model_id in base_models:
|
160 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
161 |
+
model_id,
|
162 |
+
safety_checker=None,
|
163 |
+
controlnet=controlnet_canny,
|
164 |
+
)
|
165 |
+
self.pipes[model_id] = pipe
|
166 |
+
|
167 |
+
self.canny_torch = SobelOperator(device=device)
|
168 |
+
|
169 |
+
for pipe in self.pipes.values():
|
170 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
171 |
+
pipe.set_progress_bar_config(disable=True)
|
172 |
+
pipe.to(device=device, dtype=torch_dtype).to(device)
|
173 |
+
|
174 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
175 |
+
pipe.enable_attention_slicing()
|
176 |
+
|
177 |
+
# Load LCM LoRA
|
178 |
+
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
179 |
+
pipe.compel_proc = Compel(
|
180 |
+
tokenizer=pipe.tokenizer,
|
181 |
+
text_encoder=pipe.text_encoder,
|
182 |
+
truncate_long_prompts=False,
|
183 |
+
)
|
184 |
+
if args.torch_compile:
|
185 |
+
pipe.unet = torch.compile(
|
186 |
+
pipe.unet, mode="reduce-overhead", fullgraph=True
|
187 |
+
)
|
188 |
+
pipe.vae = torch.compile(
|
189 |
+
pipe.vae, mode="reduce-overhead", fullgraph=True
|
190 |
+
)
|
191 |
+
pipe(
|
192 |
+
prompt="warmup",
|
193 |
+
image=[Image.new("RGB", (768, 768))],
|
194 |
+
control_image=[Image.new("RGB", (768, 768))],
|
195 |
+
)
|
196 |
+
|
197 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
198 |
+
generator = torch.manual_seed(params.seed)
|
199 |
+
print(f"Using model: {params.model_id}")
|
200 |
+
pipe = self.pipes[params.model_id]
|
201 |
+
|
202 |
+
prompt_embeds = pipe.compel_proc(params.prompt)
|
203 |
+
control_image = self.canny_torch(
|
204 |
+
params.image, params.canny_low_threshold, params.canny_high_threshold
|
205 |
+
)
|
206 |
+
|
207 |
+
results = pipe(
|
208 |
+
image=params.image,
|
209 |
+
control_image=control_image,
|
210 |
+
prompt_embeds=prompt_embeds,
|
211 |
+
generator=generator,
|
212 |
+
strength=params.strength,
|
213 |
+
num_inference_steps=params.steps,
|
214 |
+
guidance_scale=params.guidance_scale,
|
215 |
+
width=params.width,
|
216 |
+
height=params.height,
|
217 |
+
output_type="pil",
|
218 |
+
controlnet_conditioning_scale=params.controlnet_scale,
|
219 |
+
control_guidance_start=params.controlnet_start,
|
220 |
+
control_guidance_end=params.controlnet_end,
|
221 |
+
)
|
222 |
+
|
223 |
+
nsfw_content_detected = (
|
224 |
+
results.nsfw_content_detected[0]
|
225 |
+
if "nsfw_content_detected" in results
|
226 |
+
else False
|
227 |
+
)
|
228 |
+
if nsfw_content_detected:
|
229 |
+
return None
|
230 |
+
result_image = results.images[0]
|
231 |
+
if params.debug_canny:
|
232 |
+
# paste control_image on top of result_image
|
233 |
+
w0, h0 = (200, 200)
|
234 |
+
control_image = control_image.resize((w0, h0))
|
235 |
+
w1, h1 = result_image.size
|
236 |
+
result_image.paste(control_image, (w1 - w0, h1 - h0))
|
237 |
+
|
238 |
+
return result_image
|