rachith commited on
Commit
7d81e6b
·
1 Parent(s): 8921a31

initial working test

Browse files
Files changed (2) hide show
  1. app.py +45 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModel, AutoTokenizer
3
+ from sklearn.neighbors import NearestNeighbors
4
+
5
+
6
+
7
+ MODEL = "cardiffnlp/twitter-roberta-base-jun2022"
8
+ model = AutoModel.from_pretrained(MODEL)
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL)
10
+ embedding_matrix = model.embeddings.word_embeddings.weight
11
+ embedding_matrix = embedding_matrix.detach().numpy()
12
+
13
+ knn_model = NearestNeighbors(n_neighbors=500,
14
+ metric='cosine',
15
+ algorithm='auto',
16
+ n_jobs=3)
17
+
18
+ nbrs = knn_model.fit(embedding_matrix)
19
+
20
+ distances, indices = nbrs.kneighbors(embedding_matrix)
21
+
22
+
23
+ title = "How does a word's meaning change with time?"
24
+
25
+
26
+ def topk(word):
27
+ outs = []
28
+ index = tokenizer.encode(f'{word}')
29
+ for i in indices[index[1]]:
30
+ outs.append(tokenizer.decode(i))
31
+ print(tokenizer.decode(i))
32
+
33
+ with gr.Blocks() as demo:
34
+ gr.Markdown(f" # {title}")
35
+ # gr.Markdown(f" ## {description1}")
36
+ # gr.Markdown(f"{description2}")
37
+ # gr.Markdown(f"{description3}")
38
+ with gr.Row():
39
+ word = gr.Textbox(label="Word")
40
+ with gr.Row():
41
+ greet_btn = gr.Button("Compute")
42
+ with gr.Row():
43
+ greet_btn.click(fn=topk, inputs=[word], outputs=gr.outputs.Textbox())
44
+
45
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers
2
+ torch
3
+ scikit-learn