r3gm commited on
Commit
c0117d5
·
1 Parent(s): 3e80b7b
.gitattributes DELETED
@@ -1,2 +0,0 @@
1
- # Auto detect text files and perform LF normalization
2
- * text=auto
 
 
 
.gitignore DELETED
@@ -1,166 +0,0 @@
1
- # MDX Models
2
- mdxnet_models/*.onnx
3
-
4
- # RVC Models
5
- rvc_models/*/*.pth
6
- rvc_models/*/*.index
7
- rvc_models/*/*.npy
8
- rvc_models/hubert_base.pt
9
- rvc_models/rmvpe.pt
10
-
11
- # Output
12
- song_output/*/*.wav
13
- song_output/*/*.mp3
14
-
15
- # Byte-compiled / optimized / DLL files
16
- __pycache__/
17
- *.py[cod]
18
- *$py.class
19
-
20
- # C extensions
21
- *.so
22
-
23
- # Distribution / packaging
24
- .Python
25
- build/
26
- develop-eggs/
27
- dist/
28
- downloads/
29
- eggs/
30
- .eggs/
31
- lib/
32
- lib64/
33
- parts/
34
- sdist/
35
- var/
36
- wheels/
37
- share/python-wheels/
38
- *.egg-info/
39
- .installed.cfg
40
- *.egg
41
- MANIFEST
42
-
43
- # PyInstaller
44
- # Usually these files are written by a python script from a template
45
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
46
- *.manifest
47
- *.spec
48
-
49
- # Installer logs
50
- pip-log.txt
51
- pip-delete-this-directory.txt
52
-
53
- # Unit test / coverage reports
54
- htmlcov/
55
- .tox/
56
- .nox/
57
- .coverage
58
- .coverage.*
59
- .cache
60
- nosetests.xml
61
- coverage.xml
62
- *.cover
63
- *.py,cover
64
- .hypothesis/
65
- .pytest_cache/
66
- cover/
67
-
68
- # Translations
69
- *.mo
70
- *.pot
71
-
72
- # Django stuff:
73
- *.log
74
- local_settings.py
75
- db.sqlite3
76
- db.sqlite3-journal
77
-
78
- # Flask stuff:
79
- instance/
80
- .webassets-cache
81
-
82
- # Scrapy stuff:
83
- .scrapy
84
-
85
- # Sphinx documentation
86
- docs/_build/
87
-
88
- # PyBuilder
89
- .pybuilder/
90
- target/
91
-
92
- # Jupyter Notebook
93
- .ipynb_checkpoints
94
-
95
- # IPython
96
- profile_default/
97
- ipython_config.py
98
-
99
- # pyenv
100
- # For a library or package, you might want to ignore these files since the code is
101
- # intended to run in multiple environments; otherwise, check them in:
102
- # .python-version
103
-
104
- # pipenv
105
- # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
106
- # However, in case of collaboration, if having platform-specific dependencies or dependencies
107
- # having no cross-platform support, pipenv may install dependencies that don't work, or not
108
- # install all needed dependencies.
109
- #Pipfile.lock
110
-
111
- # poetry
112
- # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
113
- # This is especially recommended for binary packages to ensure reproducibility, and is more
114
- # commonly ignored for libraries.
115
- # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
116
- #poetry.lock
117
-
118
- # PEP 582; used by e.g. github.com/David-OConnor/pyflow
119
- __pypackages__/
120
-
121
- # Celery stuff
122
- celerybeat-schedule
123
- celerybeat.pid
124
-
125
- # SageMath parsed files
126
- *.sage.py
127
-
128
- # Environments
129
- .env
130
- .venv
131
- env/
132
- venv/
133
- ENV/
134
- env.bak/
135
- venv.bak/
136
-
137
- # Spyder project settings
138
- .spyderproject
139
- .spyproject
140
-
141
- # Rope project settings
142
- .ropeproject
143
-
144
- # mkdocs documentation
145
- /site
146
-
147
- # mypy
148
- .mypy_cache/
149
- .dmypy.json
150
- dmypy.json
151
-
152
- # Pyre type checker
153
- .pyre/
154
-
155
- # pytype static type analyzer
156
- .pytype/
157
-
158
- # Cython debug symbols
159
- cython_debug/
160
-
161
- # PyCharm
162
- # JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
163
- # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
164
- # and can be added to the global gitignore or merged into this file. For a more nuclear
165
- # option (not recommended) you can uncomment the following to ignore the entire idea folder.
166
- .idea/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2023 SociallyIneptWeeb
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: AICoverGen
3
- emoji: 🚀
4
- colorFrom: red
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 3.44.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py DELETED
@@ -1,3 +0,0 @@
1
- import os
2
- os.system("python src/download_models.py")
3
- os.system("python src/webui.py")
 
 
 
 
images/webui_dl_model.png DELETED
Binary file (132 kB)
 
images/webui_generate.png DELETED
Binary file (222 kB)
 
images/webui_upload_model.png DELETED
Binary file (110 kB)
 
mdxnet_models/model_data.json DELETED
@@ -1,340 +0,0 @@
1
- {
2
- "0ddfc0eb5792638ad5dc27850236c246": {
3
- "compensate": 1.035,
4
- "mdx_dim_f_set": 2048,
5
- "mdx_dim_t_set": 8,
6
- "mdx_n_fft_scale_set": 6144,
7
- "primary_stem": "Vocals"
8
- },
9
- "26d308f91f3423a67dc69a6d12a8793d": {
10
- "compensate": 1.035,
11
- "mdx_dim_f_set": 2048,
12
- "mdx_dim_t_set": 9,
13
- "mdx_n_fft_scale_set": 8192,
14
- "primary_stem": "Other"
15
- },
16
- "2cdd429caac38f0194b133884160f2c6": {
17
- "compensate": 1.045,
18
- "mdx_dim_f_set": 3072,
19
- "mdx_dim_t_set": 8,
20
- "mdx_n_fft_scale_set": 7680,
21
- "primary_stem": "Instrumental"
22
- },
23
- "2f5501189a2f6db6349916fabe8c90de": {
24
- "compensate": 1.035,
25
- "mdx_dim_f_set": 2048,
26
- "mdx_dim_t_set": 8,
27
- "mdx_n_fft_scale_set": 6144,
28
- "primary_stem": "Vocals"
29
- },
30
- "398580b6d5d973af3120df54cee6759d": {
31
- "compensate": 1.75,
32
- "mdx_dim_f_set": 3072,
33
- "mdx_dim_t_set": 8,
34
- "mdx_n_fft_scale_set": 7680,
35
- "primary_stem": "Vocals"
36
- },
37
- "488b3e6f8bd3717d9d7c428476be2d75": {
38
- "compensate": 1.035,
39
- "mdx_dim_f_set": 3072,
40
- "mdx_dim_t_set": 8,
41
- "mdx_n_fft_scale_set": 7680,
42
- "primary_stem": "Instrumental"
43
- },
44
- "4910e7827f335048bdac11fa967772f9": {
45
- "compensate": 1.035,
46
- "mdx_dim_f_set": 2048,
47
- "mdx_dim_t_set": 7,
48
- "mdx_n_fft_scale_set": 4096,
49
- "primary_stem": "Drums"
50
- },
51
- "53c4baf4d12c3e6c3831bb8f5b532b93": {
52
- "compensate": 1.043,
53
- "mdx_dim_f_set": 3072,
54
- "mdx_dim_t_set": 8,
55
- "mdx_n_fft_scale_set": 7680,
56
- "primary_stem": "Vocals"
57
- },
58
- "5d343409ef0df48c7d78cce9f0106781": {
59
- "compensate": 1.075,
60
- "mdx_dim_f_set": 3072,
61
- "mdx_dim_t_set": 8,
62
- "mdx_n_fft_scale_set": 7680,
63
- "primary_stem": "Vocals"
64
- },
65
- "5f6483271e1efb9bfb59e4a3e6d4d098": {
66
- "compensate": 1.035,
67
- "mdx_dim_f_set": 2048,
68
- "mdx_dim_t_set": 9,
69
- "mdx_n_fft_scale_set": 6144,
70
- "primary_stem": "Vocals"
71
- },
72
- "65ab5919372a128e4167f5e01a8fda85": {
73
- "compensate": 1.035,
74
- "mdx_dim_f_set": 2048,
75
- "mdx_dim_t_set": 8,
76
- "mdx_n_fft_scale_set": 8192,
77
- "primary_stem": "Other"
78
- },
79
- "6703e39f36f18aa7855ee1047765621d": {
80
- "compensate": 1.035,
81
- "mdx_dim_f_set": 2048,
82
- "mdx_dim_t_set": 9,
83
- "mdx_n_fft_scale_set": 16384,
84
- "primary_stem": "Bass"
85
- },
86
- "6b31de20e84392859a3d09d43f089515": {
87
- "compensate": 1.035,
88
- "mdx_dim_f_set": 2048,
89
- "mdx_dim_t_set": 8,
90
- "mdx_n_fft_scale_set": 6144,
91
- "primary_stem": "Vocals"
92
- },
93
- "867595e9de46f6ab699008295df62798": {
94
- "compensate": 1.03,
95
- "mdx_dim_f_set": 3072,
96
- "mdx_dim_t_set": 8,
97
- "mdx_n_fft_scale_set": 7680,
98
- "primary_stem": "Vocals"
99
- },
100
- "a3cd63058945e777505c01d2507daf37": {
101
- "compensate": 1.03,
102
- "mdx_dim_f_set": 2048,
103
- "mdx_dim_t_set": 8,
104
- "mdx_n_fft_scale_set": 6144,
105
- "primary_stem": "Vocals"
106
- },
107
- "b33d9b3950b6cbf5fe90a32608924700": {
108
- "compensate": 1.03,
109
- "mdx_dim_f_set": 3072,
110
- "mdx_dim_t_set": 8,
111
- "mdx_n_fft_scale_set": 7680,
112
- "primary_stem": "Vocals"
113
- },
114
- "c3b29bdce8c4fa17ec609e16220330ab": {
115
- "compensate": 1.035,
116
- "mdx_dim_f_set": 2048,
117
- "mdx_dim_t_set": 8,
118
- "mdx_n_fft_scale_set": 16384,
119
- "primary_stem": "Bass"
120
- },
121
- "ceed671467c1f64ebdfac8a2490d0d52": {
122
- "compensate": 1.035,
123
- "mdx_dim_f_set": 3072,
124
- "mdx_dim_t_set": 8,
125
- "mdx_n_fft_scale_set": 7680,
126
- "primary_stem": "Instrumental"
127
- },
128
- "d2a1376f310e4f7fa37fb9b5774eb701": {
129
- "compensate": 1.035,
130
- "mdx_dim_f_set": 3072,
131
- "mdx_dim_t_set": 8,
132
- "mdx_n_fft_scale_set": 7680,
133
- "primary_stem": "Instrumental"
134
- },
135
- "d7bff498db9324db933d913388cba6be": {
136
- "compensate": 1.035,
137
- "mdx_dim_f_set": 2048,
138
- "mdx_dim_t_set": 8,
139
- "mdx_n_fft_scale_set": 6144,
140
- "primary_stem": "Vocals"
141
- },
142
- "d94058f8c7f1fae4164868ae8ae66b20": {
143
- "compensate": 1.035,
144
- "mdx_dim_f_set": 2048,
145
- "mdx_dim_t_set": 8,
146
- "mdx_n_fft_scale_set": 6144,
147
- "primary_stem": "Vocals"
148
- },
149
- "dc41ede5961d50f277eb846db17f5319": {
150
- "compensate": 1.035,
151
- "mdx_dim_f_set": 2048,
152
- "mdx_dim_t_set": 9,
153
- "mdx_n_fft_scale_set": 4096,
154
- "primary_stem": "Drums"
155
- },
156
- "e5572e58abf111f80d8241d2e44e7fa4": {
157
- "compensate": 1.028,
158
- "mdx_dim_f_set": 3072,
159
- "mdx_dim_t_set": 8,
160
- "mdx_n_fft_scale_set": 7680,
161
- "primary_stem": "Instrumental"
162
- },
163
- "e7324c873b1f615c35c1967f912db92a": {
164
- "compensate": 1.03,
165
- "mdx_dim_f_set": 3072,
166
- "mdx_dim_t_set": 8,
167
- "mdx_n_fft_scale_set": 7680,
168
- "primary_stem": "Vocals"
169
- },
170
- "1c56ec0224f1d559c42fd6fd2a67b154": {
171
- "compensate": 1.025,
172
- "mdx_dim_f_set": 2048,
173
- "mdx_dim_t_set": 8,
174
- "mdx_n_fft_scale_set": 5120,
175
- "primary_stem": "Instrumental"
176
- },
177
- "f2df6d6863d8f435436d8b561594ff49": {
178
- "compensate": 1.035,
179
- "mdx_dim_f_set": 3072,
180
- "mdx_dim_t_set": 8,
181
- "mdx_n_fft_scale_set": 7680,
182
- "primary_stem": "Instrumental"
183
- },
184
- "b06327a00d5e5fbc7d96e1781bbdb596": {
185
- "compensate": 1.035,
186
- "mdx_dim_f_set": 3072,
187
- "mdx_dim_t_set": 8,
188
- "mdx_n_fft_scale_set": 6144,
189
- "primary_stem": "Instrumental"
190
- },
191
- "94ff780b977d3ca07c7a343dab2e25dd": {
192
- "compensate": 1.039,
193
- "mdx_dim_f_set": 3072,
194
- "mdx_dim_t_set": 8,
195
- "mdx_n_fft_scale_set": 6144,
196
- "primary_stem": "Instrumental"
197
- },
198
- "73492b58195c3b52d34590d5474452f6": {
199
- "compensate": 1.043,
200
- "mdx_dim_f_set": 3072,
201
- "mdx_dim_t_set": 8,
202
- "mdx_n_fft_scale_set": 7680,
203
- "primary_stem": "Vocals"
204
- },
205
- "970b3f9492014d18fefeedfe4773cb42": {
206
- "compensate": 1.009,
207
- "mdx_dim_f_set": 3072,
208
- "mdx_dim_t_set": 8,
209
- "mdx_n_fft_scale_set": 7680,
210
- "primary_stem": "Vocals"
211
- },
212
- "1d64a6d2c30f709b8c9b4ce1366d96ee": {
213
- "compensate": 1.035,
214
- "mdx_dim_f_set": 2048,
215
- "mdx_dim_t_set": 8,
216
- "mdx_n_fft_scale_set": 5120,
217
- "primary_stem": "Instrumental"
218
- },
219
- "203f2a3955221b64df85a41af87cf8f0": {
220
- "compensate": 1.035,
221
- "mdx_dim_f_set": 3072,
222
- "mdx_dim_t_set": 8,
223
- "mdx_n_fft_scale_set": 6144,
224
- "primary_stem": "Instrumental"
225
- },
226
- "291c2049608edb52648b96e27eb80e95": {
227
- "compensate": 1.035,
228
- "mdx_dim_f_set": 3072,
229
- "mdx_dim_t_set": 8,
230
- "mdx_n_fft_scale_set": 6144,
231
- "primary_stem": "Instrumental"
232
- },
233
- "ead8d05dab12ec571d67549b3aab03fc": {
234
- "compensate": 1.035,
235
- "mdx_dim_f_set": 3072,
236
- "mdx_dim_t_set": 8,
237
- "mdx_n_fft_scale_set": 6144,
238
- "primary_stem": "Instrumental"
239
- },
240
- "cc63408db3d80b4d85b0287d1d7c9632": {
241
- "compensate": 1.033,
242
- "mdx_dim_f_set": 3072,
243
- "mdx_dim_t_set": 8,
244
- "mdx_n_fft_scale_set": 6144,
245
- "primary_stem": "Instrumental"
246
- },
247
- "cd5b2989ad863f116c855db1dfe24e39": {
248
- "compensate": 1.035,
249
- "mdx_dim_f_set": 3072,
250
- "mdx_dim_t_set": 9,
251
- "mdx_n_fft_scale_set": 6144,
252
- "primary_stem": "Other"
253
- },
254
- "55657dd70583b0fedfba5f67df11d711": {
255
- "compensate": 1.022,
256
- "mdx_dim_f_set": 3072,
257
- "mdx_dim_t_set": 8,
258
- "mdx_n_fft_scale_set": 6144,
259
- "primary_stem": "Instrumental"
260
- },
261
- "b6bccda408a436db8500083ef3491e8b": {
262
- "compensate": 1.02,
263
- "mdx_dim_f_set": 3072,
264
- "mdx_dim_t_set": 8,
265
- "mdx_n_fft_scale_set": 7680,
266
- "primary_stem": "Instrumental"
267
- },
268
- "8a88db95c7fb5dbe6a095ff2ffb428b1": {
269
- "compensate": 1.026,
270
- "mdx_dim_f_set": 2048,
271
- "mdx_dim_t_set": 8,
272
- "mdx_n_fft_scale_set": 5120,
273
- "primary_stem": "Instrumental"
274
- },
275
- "b78da4afc6512f98e4756f5977f5c6b9": {
276
- "compensate": 1.021,
277
- "mdx_dim_f_set": 3072,
278
- "mdx_dim_t_set": 8,
279
- "mdx_n_fft_scale_set": 7680,
280
- "primary_stem": "Instrumental"
281
- },
282
- "77d07b2667ddf05b9e3175941b4454a0": {
283
- "compensate": 1.021,
284
- "mdx_dim_f_set": 3072,
285
- "mdx_dim_t_set": 8,
286
- "mdx_n_fft_scale_set": 7680,
287
- "primary_stem": "Vocals"
288
- },
289
- "2154254ee89b2945b97a7efed6e88820": {
290
- "config_yaml": "model_2_stem_061321.yaml"
291
- },
292
- "063aadd735d58150722926dcbf5852a9": {
293
- "config_yaml": "model_2_stem_061321.yaml"
294
- },
295
- "fe96801369f6a148df2720f5ced88c19": {
296
- "config_yaml": "model3.yaml"
297
- },
298
- "02e8b226f85fb566e5db894b9931c640": {
299
- "config_yaml": "model2.yaml"
300
- },
301
- "e3de6d861635ab9c1d766149edd680d6": {
302
- "config_yaml": "model1.yaml"
303
- },
304
- "3f2936c554ab73ce2e396d54636bd373": {
305
- "config_yaml": "modelB.yaml"
306
- },
307
- "890d0f6f82d7574bca741a9e8bcb8168": {
308
- "config_yaml": "modelB.yaml"
309
- },
310
- "63a3cb8c37c474681049be4ad1ba8815": {
311
- "config_yaml": "modelB.yaml"
312
- },
313
- "a7fc5d719743c7fd6b61bd2b4d48b9f0": {
314
- "config_yaml": "modelA.yaml"
315
- },
316
- "3567f3dee6e77bf366fcb1c7b8bc3745": {
317
- "config_yaml": "modelA.yaml"
318
- },
319
- "a28f4d717bd0d34cd2ff7a3b0a3d065e": {
320
- "config_yaml": "modelA.yaml"
321
- },
322
- "c9971a18da20911822593dc81caa8be9": {
323
- "config_yaml": "sndfx.yaml"
324
- },
325
- "57d94d5ed705460d21c75a5ac829a605": {
326
- "config_yaml": "sndfx.yaml"
327
- },
328
- "e7a25f8764f25a52c1b96c4946e66ba2": {
329
- "config_yaml": "sndfx.yaml"
330
- },
331
- "104081d24e37217086ce5fde09147ee1": {
332
- "config_yaml": "model_2_stem_061321.yaml"
333
- },
334
- "1e6165b601539f38d0a9330f3facffeb": {
335
- "config_yaml": "model_2_stem_061321.yaml"
336
- },
337
- "fe0108464ce0d8271be5ab810891bd7c": {
338
- "config_yaml": "model_2_stem_full_band.yaml"
339
- }
340
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
packages.txt DELETED
@@ -1,4 +0,0 @@
1
- git-lfs
2
- aria2 -y
3
- ffmpeg
4
- sox
 
 
 
 
 
requirements.txt DELETED
@@ -1,21 +0,0 @@
1
- deemix
2
- fairseq==0.12.2
3
- faiss-cpu==1.7.3
4
- ffmpeg-python>=0.2.0
5
- gradio==3.39.0
6
- lib==4.0.0
7
- librosa==0.9.1
8
- numpy==1.23.5
9
- onnxruntime #onnxruntime_gpu
10
- praat-parselmouth>=0.4.2
11
- pedalboard==0.7.7
12
- pydub==0.25.1
13
- pyworld==0.3.4
14
- Requests==2.31.0
15
- scipy==1.11.1
16
- soundfile==0.12.1
17
- --extra-index-url https://download.pytorch.org/whl/cu117 torch==2.0.0+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.0 #torch==2.0.1
18
- torchcrepe==0.0.20
19
- tqdm==4.65.0
20
- yt_dlp==2023.7.6
21
- sox==1.4.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rvc_models/MODELS.txt DELETED
@@ -1,2 +0,0 @@
1
- RVC Models can be added as a folder here. Each folder should contain the model file (.pth extension), and an index file (.index extension).
2
- For example, a folder called Maya, containing 2 files, Maya.pth and added_IVF1905_Flat_nprobe_Maya_v2.index.
 
 
 
rvc_models/public_models.json DELETED
@@ -1,626 +0,0 @@
1
- {
2
- "tags": {
3
- "English": "Character speaks English",
4
- "Japanese": "Character speaks Japanese",
5
- "Other Language": "The character speaks Other Language",
6
- "Anime": "Character from anime",
7
- "Vtuber": "Character is a vtuber",
8
- "Real person": "A person who exists in the real world",
9
- "Game character": "A character from the game"
10
- },
11
- "voice_models": [
12
- {
13
- "name": "Emilia",
14
- "url": "https://huggingface.co/RinkaEmina/RVC_Sharing/resolve/main/Emilia%20V2%2048000.zip",
15
- "description": "Emilia from Re:Zero",
16
- "added": "2023-07-31",
17
- "credit": "rinka4759",
18
- "tags": [
19
- "Anime"
20
- ]
21
- },
22
- {
23
- "name": "Klee",
24
- "url": "https://huggingface.co/qweshkka/Klee/resolve/main/Klee.zip",
25
- "description": "Klee from Genshin Impact",
26
- "added": "2023-07-31",
27
- "credit": "qweshsmashjuicefruity",
28
- "tags": [
29
- "Game character",
30
- "Japanese"
31
- ]
32
- },
33
- {
34
- "name": "Yelan",
35
- "url": "https://huggingface.co/iroaK/RVC2_Yelan_GenshinImpact/resolve/main/YelanJP.zip",
36
- "description": "Yelan from Genshin Impact",
37
- "added": "2023-07-31",
38
- "credit": "iroak",
39
- "tags": [
40
- "Game character",
41
- "Japanese"
42
- ]
43
- },
44
- {
45
- "name": "Yae Miko",
46
- "url": "https://huggingface.co/iroaK/RVC2_YaeMiko_GenshinImpact/resolve/main/Yae_MikoJP.zip",
47
- "description": "Yae Miko from Genshin Impact",
48
- "added": "2023-07-31",
49
- "credit": "iroak",
50
- "tags": [
51
- "Game character",
52
- "Japanese"
53
- ]
54
- },
55
- {
56
- "name": "Lisa",
57
- "url": "https://huggingface.co/qweshkka/Lisa2ver/resolve/main/Lisa.zip",
58
- "description": "Lisa from Genshin Impact",
59
- "added": "2023-07-31",
60
- "credit": "qweshsmashjuicefruity",
61
- "tags": [
62
- "Game character",
63
- "English"
64
- ]
65
- },
66
- {
67
- "name": "Kazuha",
68
- "url": "https://huggingface.co/iroaK/RVC2_Kazuha_GenshinImpact/resolve/main/Kazuha.zip",
69
- "description": "Kaedehara Kazuha from Genshin Impact",
70
- "added": "2023-07-31",
71
- "credit": "iroak",
72
- "tags": [
73
- "Game character",
74
- "Japanese"
75
- ]
76
- },
77
- {
78
- "name": "Barbara",
79
- "url": "https://huggingface.co/iroaK/RVC2_Barbara_GenshinImpact/resolve/main/BarbaraJP.zip",
80
- "description": "Barbara from Genshin Impact",
81
- "added": "2023-07-31",
82
- "credit": "iroak",
83
- "tags": [
84
- "Game character",
85
- "Japanese"
86
- ]
87
- },
88
- {
89
- "name": "Tom Holland",
90
- "url": "https://huggingface.co/TJKAI/TomHolland/resolve/main/TomHolland.zip",
91
- "description": "Tom Holland (Spider-Man)",
92
- "added": "2023-08-03",
93
- "credit": "tjkcreative",
94
- "tags": [
95
- "Real person",
96
- "English"
97
- ]
98
- },
99
- {
100
- "name": "Kamisato Ayaka",
101
- "url": "https://huggingface.co/benitheworld/ayaka-cn/resolve/main/ayaka-cn.zip",
102
- "description": "Kamisato Ayaka from Genshin Impact - CN voice actor",
103
- "added": "2023-08-03",
104
- "credit": "kannysoap",
105
- "tags": [
106
- "Game character",
107
- "Other Language"
108
- ]
109
- },
110
- {
111
- "name": "Amai Odayaka",
112
- "url": "https://huggingface.co/NoIdea4Username/NoIdeaRVCCollection/resolve/main/Amai-Odayaka.zip",
113
- "description": "Amai Odayaka from Yandere Simulator",
114
- "added": "2023-08-03",
115
- "credit": "minecraftian47",
116
- "tags": [
117
- "Anime",
118
- "English"
119
- ]
120
- },
121
- {
122
- "name": "Compa - Hyperdimension Neptunia",
123
- "url": "https://huggingface.co/zeerowiibu/WiibuRVCCollection/resolve/main/Compa%20(Choujigen%20Game%20Neptunia)%20(JPN)%20(RVC%20v2)%20(150%20Epochs).zip",
124
- "description": "Compa from Choujigen Game Neptune (aka Hyperdimension Neptunia)",
125
- "added": "2023-08-03",
126
- "credit": "zeerowiibu",
127
- "tags": [
128
- "Anime",
129
- "Japanese"
130
- ]
131
- },
132
- {
133
- "name": "Fu Xuan",
134
- "url": "https://huggingface.co/Juneuarie/FuXuan/resolve/main/FuXuan.zip",
135
- "description": "Fu Xuan from Honkai Star Rail (HSR)",
136
- "added": "2023-08-03",
137
- "credit": "__june",
138
- "tags": [
139
- "Game character",
140
- "English"
141
- ]
142
- },
143
- {
144
- "name": "Xinyan",
145
- "url": "https://huggingface.co/AnimeSessions/rvc_voice_models/resolve/main/XinyanRVC.zip",
146
- "description": "Xinyan from Genshin Impact",
147
- "added": "2023-08-03",
148
- "credit": "shyelijah",
149
- "tags": [
150
- "Game character",
151
- "English"
152
- ]
153
- },
154
- {
155
- "name": "Enterprise",
156
- "url": "https://huggingface.co/NoIdea4Username/NoIdeaRVCCollection/resolve/main/Enterprise-JP.zip",
157
- "description": "Enterprise from Azur Lane",
158
- "added": "2023-08-03",
159
- "credit": "minecraftian47",
160
- "tags": [
161
- "Anime",
162
- "Japanese"
163
- ]
164
- },
165
- {
166
- "name": "Kurt Cobain",
167
- "url": "https://huggingface.co/Florstie/Kurt_Cobain_byFlorst/resolve/main/Kurt_Florst.zip",
168
- "description": "singer Kurt Cobain",
169
- "added": "2023-08-03",
170
- "credit": "florst",
171
- "tags": [
172
- "Real person",
173
- "English"
174
- ]
175
- },
176
- {
177
- "name": "Ironmouse",
178
- "url": "https://huggingface.co/Tempo-Hawk/IronmouseV2/resolve/main/IronmouseV2.zip",
179
- "description": "Ironmouse",
180
- "added": "2023-08-03",
181
- "credit": "ladyimpa",
182
- "tags": [
183
- "Vtuber",
184
- "English"
185
- ]
186
- },
187
- {
188
- "name": "Bratishkinoff",
189
- "url": "https://huggingface.co/JHmashups/Bratishkinoff/resolve/main/bratishkin.zip",
190
- "description": "Bratishkinoff (Bratishkin | Братишкин) - russian steamer ",
191
- "added": "2023-08-03",
192
- "credit": ".caddii",
193
- "tags": [
194
- "Real person",
195
- "Other Language"
196
- ]
197
- },
198
- {
199
- "name": "Yagami Light",
200
- "url": "https://huggingface.co/geekdom-tr/Yagami-Light/resolve/main/Yagami-Light.zip",
201
- "description": "Yagami Light (Miyano Mamoru) from death note",
202
- "added": "2023-08-03",
203
- "credit": "takka / takka#7700",
204
- "tags": [
205
- "Anime",
206
- "Japanese"
207
- ]
208
- },
209
- {
210
- "name": "Itashi",
211
- "url": "https://huggingface.co/4uGGun/4uGGunRVC/resolve/main/itashi.zip",
212
- "description": "Itashi (Russian fandubber AniLibria) ",
213
- "added": "2023-08-03",
214
- "credit": "BelochkaOff",
215
- "tags": [
216
- "Anime",
217
- "Other Language",
218
- "Real person"
219
- ]
220
- },
221
- {
222
- "name": "Michiru Kagemori",
223
- "url": "https://huggingface.co/WolfMK/MichiruKagemori/resolve/main/MichiruKagemori_RVC_V2.zip",
224
- "description": "Michiru Kagemori from Brand New Animal (300 Epochs)",
225
- "added": "2023-08-03",
226
- "credit": "wolfmk",
227
- "tags": [
228
- "Anime",
229
- "English"
230
- ]
231
- }
232
- ,
233
- {
234
- "name": "Kaeya",
235
- "url": "https://huggingface.co/nlordqting4444/nlordqtingRVC/resolve/main/Kaeya.zip",
236
- "description": "Kaeya (VA: Kohsuke Toriumi) from Genshin Impact (300 Epochs)",
237
- "added": "2023-08-03",
238
- "credit": "nlordqting4444",
239
- "tags": [
240
- "Game character",
241
- "Japanese"
242
- ]
243
- },
244
- {
245
- "name": "Mona Megistus",
246
- "url": "https://huggingface.co/AnimeSessions/rvc_voice_models/resolve/main/MonaRVC.zip",
247
- "description": "Mona Megistus (VA: Felecia Angelle) from Genshin Impact (250 Epochs)",
248
- "added": "2023-08-03",
249
- "credit": "shyelijah",
250
- "tags": [
251
- "Game character",
252
- "English"
253
- ]
254
- },
255
- {
256
- "name": "Klee",
257
- "url": "https://huggingface.co/hardbop/AI_MODEL_THINGY/resolve/main/kleeeng_rvc.zip",
258
- "description": "Klee from Genshin Impact (400 Epochs)",
259
- "added": "2023-08-03",
260
- "credit": "hardbop",
261
- "tags": [
262
- "Game character",
263
- "English"
264
- ]
265
- },
266
- {
267
- "name": "Sakurakoji Kinako",
268
- "url": "https://huggingface.co/Gorodogi/RVC2MangioCrepe/resolve/main/kinakobetatwo700.zip",
269
- "description": "Sakurakoji Kinako (Suzuhara Nozomi) from Love Live! Superstar!! (700 Epoch)",
270
- "added": "2023-08-03",
271
- "credit": "ck1089",
272
- "tags": [
273
- "Anime",
274
- "Japanese"
275
- ]
276
- },
277
- {
278
- "name": "Minamo Kurosawa",
279
- "url": "https://huggingface.co/timothy10583/RVC/resolve/main/minamo-kurosawa.zip",
280
- "description": "Minamo (Nyamo) Kurosawa (Azumanga Daioh US DUB) (300 Epochs)",
281
- "added": "2023-08-03",
282
- "credit": "timothy10583",
283
- "tags": [
284
- "Anime"
285
- ]
286
- },
287
- {
288
- "name": "Neco Arc",
289
- "url": "https://huggingface.co/Ozzy-Helix/Neko_Arc_Neko_Aruku.RVCv2/resolve/main/Neko_Arc-V3-E600.zip",
290
- "description": "Neco Arc (Neco-Aruku) (Epochs 600)",
291
- "added": "2023-08-03",
292
- "credit": "ozzy_helix_",
293
- "tags": [
294
- "Anime"
295
- ]
296
- },
297
- {
298
- "name": "Makima",
299
- "url": "https://huggingface.co/andolei/makimaen/resolve/main/makima-en-dub.zip",
300
- "description": "Makima from Chainsaw Man (300 Epochs)",
301
- "added": "2023-08-03",
302
- "credit": "andpproximately",
303
- "tags": [
304
- "Anime",
305
- "English"
306
- ]
307
- },
308
- {
309
- "name": "PomPom",
310
- "url": "https://huggingface.co/benitheworld/pom-pom/resolve/main/pom-pom.zip",
311
- "description": "PomPom from Honkai Star Rail (HSR) (200 Epochs)",
312
- "added": "2023-08-03",
313
- "credit": "kannysoap",
314
- "tags": [
315
- "Game character",
316
- "English"
317
- ]
318
- },
319
- {
320
- "name": "Asuka Langley Soryu",
321
- "url": "https://huggingface.co/Piegirl/asukaadv/resolve/main/asuka.zip",
322
- "description": "Asuka Langley Soryu/Tiffany Grant from Neon Genesis Evangelion (400 Epochs)",
323
- "added": "2023-08-03",
324
- "credit": "piegirl",
325
- "tags": [
326
- "Anime",
327
- "English"
328
- ]
329
- },
330
- {
331
- "name": "Ochaco Uraraka",
332
- "url": "https://huggingface.co/legitdark/JP-Uraraka-By-Dan/resolve/main/JP-Uraraka-By-Dan.zip",
333
- "description": "Ochaco Uraraka from Boku no Hero Academia (320 Epochs)",
334
- "added": "2023-08-03",
335
- "credit": "danthevegetable",
336
- "tags": [
337
- "Anime",
338
- "Japanese"
339
- ]
340
- },
341
- {
342
- "name": "Sunaokami Shiroko",
343
- "url": "https://huggingface.co/LordDavis778/BlueArchivevoicemodels/resolve/main/SunaokamiShiroko.zip",
344
- "description": "Sunaokami Shiroko from Blue Archive (500 Epochs)",
345
- "added": "2023-08-03",
346
- "credit": "lorddavis778",
347
- "tags": [
348
- "Anime"
349
- ]
350
- },
351
- {
352
- "name": "Dainsleif",
353
- "url": "https://huggingface.co/Nasleyy/NasleyRVC/resolve/main/Voices/Dainsleif/Dainsleif.zip",
354
- "description": "Dainsleif from Genshin Impact (335 Epochs)",
355
- "added": "2023-08-03",
356
- "credit": "nasley",
357
- "tags": [
358
- "Game character",
359
- "English"
360
- ]
361
- },
362
- {
363
- "name": "Mae Asmr",
364
- "url": "https://huggingface.co/ctian/VRC/resolve/main/MaeASMR.zip",
365
- "description": "Mae Asmr - harvest mommy voice (YOUTUBE) (300 Epochs)",
366
- "added": "2023-08-03",
367
- "credit": "ctian_04",
368
- "tags": [
369
- "English",
370
- "Real person",
371
- "Vtuber"
372
- ]
373
- },
374
- {
375
- "name": "Hana Shirosaki ",
376
- "url": "https://huggingface.co/Pawlik17/HanaWataten/resolve/main/HanaWATATEN.zip",
377
- "description": "Hana Shirosaki / 白 咲 花 From Watashi ni Tenshi ga Maiorita! (570 Epochs)",
378
- "added": "2023-08-03",
379
- "credit": "tamalik",
380
- "tags": [
381
- "Anime",
382
- "Japanese"
383
- ]
384
- },
385
- {
386
- "name": "Kaguya Shinomiya ",
387
- "url": "https://huggingface.co/1ski/1skiRVCModels/resolve/main/kaguyav5.zip",
388
- "description": "Kaguya Shinomiya from Kaguya-Sama Love is war (200 Epochs)",
389
- "added": "2023-08-03",
390
- "credit": "1ski",
391
- "tags": [
392
- "Anime",
393
- "Japanese"
394
- ]
395
- },
396
- {
397
- "name": "Nai Shiro",
398
- "url": "https://huggingface.co/kuushiro/Shiro-RVC-No-Game-No-Life/resolve/main/shiro-jp-360-epochs.zip",
399
- "description": "Nai Shiro (Ai Kayano) from No Game No Life (360 Epochs)",
400
- "added": "2023-08-03",
401
- "credit": "kxouyou",
402
- "tags": [
403
- "Anime",
404
- "Japanese"
405
- ]
406
- },
407
- {
408
- "name": "Yuigahama Yui",
409
- "url": "https://huggingface.co/Zerokano/Yuigahama_Yui-RVCv2/resolve/main/Yuigahama_Yui.zip",
410
- "description": "Yuigahama Yui from Yahari Ore no Seishun Love Comedy wa Machigatteiru (250 Epochs)",
411
- "added": "2023-08-03",
412
- "credit": "zerokano",
413
- "tags": [
414
- "Anime",
415
- "Japanese"
416
- ]
417
- },
418
- {
419
- "name": "Fuwawa Abyssgard",
420
- "url": "https://huggingface.co/megaaziib/my-rvc-models-collection/resolve/main/fuwawa.zip",
421
- "description": "Fuwawa Abyssgard (FUWAMOCO) from Hololive gen 3 (250 Epochs)",
422
- "added": "2023-08-03",
423
- "credit": "megaaziib",
424
- "tags": [
425
- "Vtuber",
426
- "English"
427
- ]
428
- },
429
- {
430
- "name": "Kana Arima",
431
- "url": "https://huggingface.co/ddoumakunn/arimakanna/resolve/main/arimakanna.zip",
432
- "description": "Kana Arima from Oshi no Ko (250 Epochs)",
433
- "added": "2023-08-03",
434
- "credit": "ddoumakunn",
435
- "tags": [
436
- "Anime",
437
- "Japanese"
438
- ]
439
- },
440
- {
441
- "name": "Raiden Shogun",
442
- "url": "https://huggingface.co/Nasleyy/NasleyRVC/resolve/main/Voices/RaidenShogun/RaidenShogun.zip",
443
- "description": "Raiden Shogun from Genshin Impact (310 Epochs)",
444
- "added": "2023-08-03",
445
- "credit": "nasley",
446
- "tags": [
447
- "Game character",
448
- "English"
449
- ]
450
- },
451
- {
452
- "name": "Alhaitham",
453
- "url": "https://huggingface.co/Nasleyy/NasleyRVC/resolve/main/Voices/Alhaitham/Alhaitham.zip",
454
- "description": "Alhaitham from Genshin Impact (320 Epochs)",
455
- "added": "2023-08-03",
456
- "credit": "nasley",
457
- "tags": [
458
- "Game character",
459
- "English"
460
- ]
461
- },
462
- {
463
- "name": "Izuku Midoriya",
464
- "url": "https://huggingface.co/BigGuy635/MHA/resolve/main/DekuJP.zip",
465
- "description": "Izuku Midoriya from Boku no Hero Academia (100 Epochs)",
466
- "added": "2023-08-03",
467
- "credit": "khjjnoffical",
468
- "tags": [
469
- "Anime",
470
- "Japanese"
471
- ]
472
- },
473
- {
474
- "name": "Kurumi Shiratori",
475
- "url": "https://huggingface.co/HarunaKasuga/YoshikoTsushima/resolve/main/KurumiShiratori.zip",
476
- "description": "Kurumi Shiratori (VA: Ruka Fukagawa) from D4DJ (500 Epochs)",
477
- "added": "2023-08-03",
478
- "credit": "seakrait",
479
- "tags": [
480
- "Anime",
481
- "Japanese"
482
- ]
483
- },
484
- {
485
- "name": "Veibae",
486
- "url": "https://huggingface.co/datasets/Papaquans/Veibae/resolve/main/veibae_e165_s125565.zip",
487
- "description": "Veibae (165 Epochs)",
488
- "added": "2023-08-03",
489
- "credit": "recairo",
490
- "tags": [
491
- "Vtuber",
492
- "English"
493
- ]
494
- },
495
- {
496
- "name": "Black Panther",
497
- "url": "https://huggingface.co/TJKAI/BlackPannther/resolve/main/BlackPanther.zip",
498
- "description": "Black Panther (Chadwick Boseman) (300 Epochs)",
499
- "added": "2023-08-03",
500
- "credit": "tjkcreative",
501
- "tags": [
502
- "Real person",
503
- "English"
504
- ]
505
- },
506
- {
507
- "name": "Gawr Gura",
508
- "url": "https://pixeldrain.com/u/3tJmABXA",
509
- "description": "Gawr Gura from Hololive EN",
510
- "added": "2023-08-05",
511
- "credit": "dacoolkid44 & hijack",
512
- "tags": [
513
- "Vtuber"
514
- ]
515
- },
516
- {
517
- "name": "Houshou Marine",
518
- "url": "https://pixeldrain.com/u/L1YLfZyU",
519
- "description": "Houshou Marine from Hololive JP",
520
- "added": "2023-08-05",
521
- "credit": "dacoolkid44 & hijack",
522
- "tags": [
523
- "Vtuber",
524
- "Japanese"
525
- ]
526
- },
527
- {
528
- "name": "Hoshimachi Suisei",
529
- "url": "https://pixeldrain.com/u/YP89C21u",
530
- "description": "Hoshimachi Suisei from Hololive JP",
531
- "added": "2023-08-05",
532
- "credit": "dacoolkid44 & hijack & Maki Ligon",
533
- "tags": [
534
- "Vtuber",
535
- "Japanese"
536
- ]
537
- },
538
- {
539
- "name": "Laplus Darkness",
540
- "url": "https://pixeldrain.com/u/zmuxv5Bf",
541
- "description": "Laplus Darkness from Hololive JP",
542
- "added": "2023-08-05",
543
- "credit": "dacoolkid44 & hijack",
544
- "tags": [
545
- "Vtuber",
546
- "Japanese"
547
- ]
548
- },
549
- {
550
- "name": "AZKi",
551
- "url": "https://huggingface.co/Kit-Lemonfoot/kitlemonfoot_rvc_models/resolve/main/AZKi%20(Hybrid).zip",
552
- "description": "AZKi from Hololive JP",
553
- "added": "2023-08-05",
554
- "credit": "Kit Lemonfoot / NSHFB",
555
- "tags": [
556
- "Vtuber",
557
- "Japanese"
558
- ]
559
- },
560
- {
561
- "name": "Ado",
562
- "url": "https://huggingface.co/pjesek/AdoRVCv2/resolve/main/AdoRVCv2.zip",
563
- "description": "Talented JP artist (500 epochs using every song from her first album)",
564
- "added": "2023-08-05",
565
- "credit": "pjesek",
566
- "tags": [
567
- "Real person",
568
- "Japanese"
569
- ]
570
- },
571
- {
572
- "name": "LiSA",
573
- "url": "https://huggingface.co/phant0m4r/LiSA/resolve/main/LiSA.zip",
574
- "description": "Talented JP artist (400 epochs)",
575
- "added": "2023-08-05",
576
- "credit": "Phant0m",
577
- "tags": [
578
- "Real person",
579
- "Japanese"
580
- ]
581
- },
582
- {
583
- "name": "Kokomi",
584
- "url": "https://huggingface.co/benitheworld/kokomi-kr/resolve/main/kokomi-kr.zip",
585
- "description": "Kokomi from Genshin Impact KR (300 Epochs)",
586
- "added": "2023-08-09",
587
- "credit": "kannysoap",
588
- "tags": [
589
- "Game character",
590
- "Other Language"
591
- ]
592
- },
593
- {
594
- "name": "Ivanzolo",
595
- "url": "https://huggingface.co/fenikkusugosuto/IvanZolo2004/resolve/main/ivanZolo.zip",
596
- "description": "Ivanzolo2004 russian streamer | Иван Золо 2004",
597
- "added": "2023-08-09",
598
- "credit": "prezervativ_naruto2009",
599
- "tags": [
600
- "Other Language",
601
- "Real person"
602
- ]
603
- },
604
- {
605
- "name": "Nilou",
606
- "url": "https://huggingface.co/benitheworld/nilou-kr/resolve/main/nilou-kr.zip",
607
- "description": "Nilou from Genshin Impact KR (300 Epochs)",
608
- "added": "2023-08-09",
609
- "credit": "kannysoap",
610
- "tags": [
611
- "Game character",
612
- "Other Language"
613
- ]
614
- },
615
- {
616
- "name": "Dr. Doofenshmirtz",
617
- "url": "https://huggingface.co/Argax/doofenshmirtz-RUS/resolve/main/doofenshmirtz.zip",
618
- "description": "RUS Dr. Doofenshmirtz from Phineas and Ferb (300 epochs)",
619
- "added": "2023-08-09",
620
- "credit": "argaxus",
621
- "tags": [
622
- "Other Language"
623
- ]
624
- }
625
- ]
626
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
song_output/OUTPUT.txt DELETED
@@ -1 +0,0 @@
1
- Output is stored in this folder, where directory names represent the YouTube IDs from the original song.
 
 
src/configs/32k.json DELETED
@@ -1,46 +0,0 @@
1
- {
2
- "train": {
3
- "log_interval": 200,
4
- "seed": 1234,
5
- "epochs": 20000,
6
- "learning_rate": 1e-4,
7
- "betas": [0.8, 0.99],
8
- "eps": 1e-9,
9
- "batch_size": 4,
10
- "fp16_run": false,
11
- "lr_decay": 0.999875,
12
- "segment_size": 12800,
13
- "init_lr_ratio": 1,
14
- "warmup_epochs": 0,
15
- "c_mel": 45,
16
- "c_kl": 1.0
17
- },
18
- "data": {
19
- "max_wav_value": 32768.0,
20
- "sampling_rate": 32000,
21
- "filter_length": 1024,
22
- "hop_length": 320,
23
- "win_length": 1024,
24
- "n_mel_channels": 80,
25
- "mel_fmin": 0.0,
26
- "mel_fmax": null
27
- },
28
- "model": {
29
- "inter_channels": 192,
30
- "hidden_channels": 192,
31
- "filter_channels": 768,
32
- "n_heads": 2,
33
- "n_layers": 6,
34
- "kernel_size": 3,
35
- "p_dropout": 0,
36
- "resblock": "1",
37
- "resblock_kernel_sizes": [3,7,11],
38
- "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
- "upsample_rates": [10,4,2,2,2],
40
- "upsample_initial_channel": 512,
41
- "upsample_kernel_sizes": [16,16,4,4,4],
42
- "use_spectral_norm": false,
43
- "gin_channels": 256,
44
- "spk_embed_dim": 109
45
- }
46
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/configs/32k_v2.json DELETED
@@ -1,46 +0,0 @@
1
- {
2
- "train": {
3
- "log_interval": 200,
4
- "seed": 1234,
5
- "epochs": 20000,
6
- "learning_rate": 1e-4,
7
- "betas": [0.8, 0.99],
8
- "eps": 1e-9,
9
- "batch_size": 4,
10
- "fp16_run": true,
11
- "lr_decay": 0.999875,
12
- "segment_size": 12800,
13
- "init_lr_ratio": 1,
14
- "warmup_epochs": 0,
15
- "c_mel": 45,
16
- "c_kl": 1.0
17
- },
18
- "data": {
19
- "max_wav_value": 32768.0,
20
- "sampling_rate": 32000,
21
- "filter_length": 1024,
22
- "hop_length": 320,
23
- "win_length": 1024,
24
- "n_mel_channels": 80,
25
- "mel_fmin": 0.0,
26
- "mel_fmax": null
27
- },
28
- "model": {
29
- "inter_channels": 192,
30
- "hidden_channels": 192,
31
- "filter_channels": 768,
32
- "n_heads": 2,
33
- "n_layers": 6,
34
- "kernel_size": 3,
35
- "p_dropout": 0,
36
- "resblock": "1",
37
- "resblock_kernel_sizes": [3,7,11],
38
- "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
- "upsample_rates": [10,8,2,2],
40
- "upsample_initial_channel": 512,
41
- "upsample_kernel_sizes": [20,16,4,4],
42
- "use_spectral_norm": false,
43
- "gin_channels": 256,
44
- "spk_embed_dim": 109
45
- }
46
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/configs/40k.json DELETED
@@ -1,46 +0,0 @@
1
- {
2
- "train": {
3
- "log_interval": 200,
4
- "seed": 1234,
5
- "epochs": 20000,
6
- "learning_rate": 1e-4,
7
- "betas": [0.8, 0.99],
8
- "eps": 1e-9,
9
- "batch_size": 4,
10
- "fp16_run": false,
11
- "lr_decay": 0.999875,
12
- "segment_size": 12800,
13
- "init_lr_ratio": 1,
14
- "warmup_epochs": 0,
15
- "c_mel": 45,
16
- "c_kl": 1.0
17
- },
18
- "data": {
19
- "max_wav_value": 32768.0,
20
- "sampling_rate": 40000,
21
- "filter_length": 2048,
22
- "hop_length": 400,
23
- "win_length": 2048,
24
- "n_mel_channels": 125,
25
- "mel_fmin": 0.0,
26
- "mel_fmax": null
27
- },
28
- "model": {
29
- "inter_channels": 192,
30
- "hidden_channels": 192,
31
- "filter_channels": 768,
32
- "n_heads": 2,
33
- "n_layers": 6,
34
- "kernel_size": 3,
35
- "p_dropout": 0,
36
- "resblock": "1",
37
- "resblock_kernel_sizes": [3,7,11],
38
- "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
- "upsample_rates": [10,10,2,2],
40
- "upsample_initial_channel": 512,
41
- "upsample_kernel_sizes": [16,16,4,4],
42
- "use_spectral_norm": false,
43
- "gin_channels": 256,
44
- "spk_embed_dim": 109
45
- }
46
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/configs/48k.json DELETED
@@ -1,46 +0,0 @@
1
- {
2
- "train": {
3
- "log_interval": 200,
4
- "seed": 1234,
5
- "epochs": 20000,
6
- "learning_rate": 1e-4,
7
- "betas": [0.8, 0.99],
8
- "eps": 1e-9,
9
- "batch_size": 4,
10
- "fp16_run": false,
11
- "lr_decay": 0.999875,
12
- "segment_size": 11520,
13
- "init_lr_ratio": 1,
14
- "warmup_epochs": 0,
15
- "c_mel": 45,
16
- "c_kl": 1.0
17
- },
18
- "data": {
19
- "max_wav_value": 32768.0,
20
- "sampling_rate": 48000,
21
- "filter_length": 2048,
22
- "hop_length": 480,
23
- "win_length": 2048,
24
- "n_mel_channels": 128,
25
- "mel_fmin": 0.0,
26
- "mel_fmax": null
27
- },
28
- "model": {
29
- "inter_channels": 192,
30
- "hidden_channels": 192,
31
- "filter_channels": 768,
32
- "n_heads": 2,
33
- "n_layers": 6,
34
- "kernel_size": 3,
35
- "p_dropout": 0,
36
- "resblock": "1",
37
- "resblock_kernel_sizes": [3,7,11],
38
- "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
- "upsample_rates": [10,6,2,2,2],
40
- "upsample_initial_channel": 512,
41
- "upsample_kernel_sizes": [16,16,4,4,4],
42
- "use_spectral_norm": false,
43
- "gin_channels": 256,
44
- "spk_embed_dim": 109
45
- }
46
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/configs/48k_v2.json DELETED
@@ -1,46 +0,0 @@
1
- {
2
- "train": {
3
- "log_interval": 200,
4
- "seed": 1234,
5
- "epochs": 20000,
6
- "learning_rate": 1e-4,
7
- "betas": [0.8, 0.99],
8
- "eps": 1e-9,
9
- "batch_size": 4,
10
- "fp16_run": true,
11
- "lr_decay": 0.999875,
12
- "segment_size": 17280,
13
- "init_lr_ratio": 1,
14
- "warmup_epochs": 0,
15
- "c_mel": 45,
16
- "c_kl": 1.0
17
- },
18
- "data": {
19
- "max_wav_value": 32768.0,
20
- "sampling_rate": 48000,
21
- "filter_length": 2048,
22
- "hop_length": 480,
23
- "win_length": 2048,
24
- "n_mel_channels": 128,
25
- "mel_fmin": 0.0,
26
- "mel_fmax": null
27
- },
28
- "model": {
29
- "inter_channels": 192,
30
- "hidden_channels": 192,
31
- "filter_channels": 768,
32
- "n_heads": 2,
33
- "n_layers": 6,
34
- "kernel_size": 3,
35
- "p_dropout": 0,
36
- "resblock": "1",
37
- "resblock_kernel_sizes": [3,7,11],
38
- "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39
- "upsample_rates": [12,10,2,2],
40
- "upsample_initial_channel": 512,
41
- "upsample_kernel_sizes": [24,20,4,4],
42
- "use_spectral_norm": false,
43
- "gin_channels": 256,
44
- "spk_embed_dim": 109
45
- }
46
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/download_models.py DELETED
@@ -1,31 +0,0 @@
1
- from pathlib import Path
2
- import requests
3
-
4
- MDX_DOWNLOAD_LINK = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/'
5
- RVC_DOWNLOAD_LINK = 'https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/'
6
-
7
- BASE_DIR = Path(__file__).resolve().parent.parent
8
- mdxnet_models_dir = BASE_DIR / 'mdxnet_models'
9
- rvc_models_dir = BASE_DIR / 'rvc_models'
10
-
11
-
12
- def dl_model(link, model_name, dir_name):
13
- with requests.get(f'{link}{model_name}') as r:
14
- r.raise_for_status()
15
- with open(dir_name / model_name, 'wb') as f:
16
- for chunk in r.iter_content(chunk_size=8192):
17
- f.write(chunk)
18
-
19
-
20
- if __name__ == '__main__':
21
- mdx_model_names = ['UVR-MDX-NET-Voc_FT.onnx', 'UVR_MDXNET_KARA_2.onnx', 'Reverb_HQ_By_FoxJoy.onnx']
22
- for model in mdx_model_names:
23
- print(f'Downloading {model}...')
24
- dl_model(MDX_DOWNLOAD_LINK, model, mdxnet_models_dir)
25
-
26
- rvc_model_names = ['hubert_base.pt', 'rmvpe.pt']
27
- for model in rvc_model_names:
28
- print(f'Downloading {model}...')
29
- dl_model(RVC_DOWNLOAD_LINK, model, rvc_models_dir)
30
-
31
- print('All models downloaded!')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/infer_pack/attentions.py DELETED
@@ -1,417 +0,0 @@
1
- import copy
2
- import math
3
- import numpy as np
4
- import torch
5
- from torch import nn
6
- from torch.nn import functional as F
7
-
8
- from infer_pack import commons
9
- from infer_pack import modules
10
- from infer_pack.modules import LayerNorm
11
-
12
-
13
- class Encoder(nn.Module):
14
- def __init__(
15
- self,
16
- hidden_channels,
17
- filter_channels,
18
- n_heads,
19
- n_layers,
20
- kernel_size=1,
21
- p_dropout=0.0,
22
- window_size=10,
23
- **kwargs
24
- ):
25
- super().__init__()
26
- self.hidden_channels = hidden_channels
27
- self.filter_channels = filter_channels
28
- self.n_heads = n_heads
29
- self.n_layers = n_layers
30
- self.kernel_size = kernel_size
31
- self.p_dropout = p_dropout
32
- self.window_size = window_size
33
-
34
- self.drop = nn.Dropout(p_dropout)
35
- self.attn_layers = nn.ModuleList()
36
- self.norm_layers_1 = nn.ModuleList()
37
- self.ffn_layers = nn.ModuleList()
38
- self.norm_layers_2 = nn.ModuleList()
39
- for i in range(self.n_layers):
40
- self.attn_layers.append(
41
- MultiHeadAttention(
42
- hidden_channels,
43
- hidden_channels,
44
- n_heads,
45
- p_dropout=p_dropout,
46
- window_size=window_size,
47
- )
48
- )
49
- self.norm_layers_1.append(LayerNorm(hidden_channels))
50
- self.ffn_layers.append(
51
- FFN(
52
- hidden_channels,
53
- hidden_channels,
54
- filter_channels,
55
- kernel_size,
56
- p_dropout=p_dropout,
57
- )
58
- )
59
- self.norm_layers_2.append(LayerNorm(hidden_channels))
60
-
61
- def forward(self, x, x_mask):
62
- attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
63
- x = x * x_mask
64
- for i in range(self.n_layers):
65
- y = self.attn_layers[i](x, x, attn_mask)
66
- y = self.drop(y)
67
- x = self.norm_layers_1[i](x + y)
68
-
69
- y = self.ffn_layers[i](x, x_mask)
70
- y = self.drop(y)
71
- x = self.norm_layers_2[i](x + y)
72
- x = x * x_mask
73
- return x
74
-
75
-
76
- class Decoder(nn.Module):
77
- def __init__(
78
- self,
79
- hidden_channels,
80
- filter_channels,
81
- n_heads,
82
- n_layers,
83
- kernel_size=1,
84
- p_dropout=0.0,
85
- proximal_bias=False,
86
- proximal_init=True,
87
- **kwargs
88
- ):
89
- super().__init__()
90
- self.hidden_channels = hidden_channels
91
- self.filter_channels = filter_channels
92
- self.n_heads = n_heads
93
- self.n_layers = n_layers
94
- self.kernel_size = kernel_size
95
- self.p_dropout = p_dropout
96
- self.proximal_bias = proximal_bias
97
- self.proximal_init = proximal_init
98
-
99
- self.drop = nn.Dropout(p_dropout)
100
- self.self_attn_layers = nn.ModuleList()
101
- self.norm_layers_0 = nn.ModuleList()
102
- self.encdec_attn_layers = nn.ModuleList()
103
- self.norm_layers_1 = nn.ModuleList()
104
- self.ffn_layers = nn.ModuleList()
105
- self.norm_layers_2 = nn.ModuleList()
106
- for i in range(self.n_layers):
107
- self.self_attn_layers.append(
108
- MultiHeadAttention(
109
- hidden_channels,
110
- hidden_channels,
111
- n_heads,
112
- p_dropout=p_dropout,
113
- proximal_bias=proximal_bias,
114
- proximal_init=proximal_init,
115
- )
116
- )
117
- self.norm_layers_0.append(LayerNorm(hidden_channels))
118
- self.encdec_attn_layers.append(
119
- MultiHeadAttention(
120
- hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
121
- )
122
- )
123
- self.norm_layers_1.append(LayerNorm(hidden_channels))
124
- self.ffn_layers.append(
125
- FFN(
126
- hidden_channels,
127
- hidden_channels,
128
- filter_channels,
129
- kernel_size,
130
- p_dropout=p_dropout,
131
- causal=True,
132
- )
133
- )
134
- self.norm_layers_2.append(LayerNorm(hidden_channels))
135
-
136
- def forward(self, x, x_mask, h, h_mask):
137
- """
138
- x: decoder input
139
- h: encoder output
140
- """
141
- self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
142
- device=x.device, dtype=x.dtype
143
- )
144
- encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
145
- x = x * x_mask
146
- for i in range(self.n_layers):
147
- y = self.self_attn_layers[i](x, x, self_attn_mask)
148
- y = self.drop(y)
149
- x = self.norm_layers_0[i](x + y)
150
-
151
- y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
152
- y = self.drop(y)
153
- x = self.norm_layers_1[i](x + y)
154
-
155
- y = self.ffn_layers[i](x, x_mask)
156
- y = self.drop(y)
157
- x = self.norm_layers_2[i](x + y)
158
- x = x * x_mask
159
- return x
160
-
161
-
162
- class MultiHeadAttention(nn.Module):
163
- def __init__(
164
- self,
165
- channels,
166
- out_channels,
167
- n_heads,
168
- p_dropout=0.0,
169
- window_size=None,
170
- heads_share=True,
171
- block_length=None,
172
- proximal_bias=False,
173
- proximal_init=False,
174
- ):
175
- super().__init__()
176
- assert channels % n_heads == 0
177
-
178
- self.channels = channels
179
- self.out_channels = out_channels
180
- self.n_heads = n_heads
181
- self.p_dropout = p_dropout
182
- self.window_size = window_size
183
- self.heads_share = heads_share
184
- self.block_length = block_length
185
- self.proximal_bias = proximal_bias
186
- self.proximal_init = proximal_init
187
- self.attn = None
188
-
189
- self.k_channels = channels // n_heads
190
- self.conv_q = nn.Conv1d(channels, channels, 1)
191
- self.conv_k = nn.Conv1d(channels, channels, 1)
192
- self.conv_v = nn.Conv1d(channels, channels, 1)
193
- self.conv_o = nn.Conv1d(channels, out_channels, 1)
194
- self.drop = nn.Dropout(p_dropout)
195
-
196
- if window_size is not None:
197
- n_heads_rel = 1 if heads_share else n_heads
198
- rel_stddev = self.k_channels**-0.5
199
- self.emb_rel_k = nn.Parameter(
200
- torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
201
- * rel_stddev
202
- )
203
- self.emb_rel_v = nn.Parameter(
204
- torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
205
- * rel_stddev
206
- )
207
-
208
- nn.init.xavier_uniform_(self.conv_q.weight)
209
- nn.init.xavier_uniform_(self.conv_k.weight)
210
- nn.init.xavier_uniform_(self.conv_v.weight)
211
- if proximal_init:
212
- with torch.no_grad():
213
- self.conv_k.weight.copy_(self.conv_q.weight)
214
- self.conv_k.bias.copy_(self.conv_q.bias)
215
-
216
- def forward(self, x, c, attn_mask=None):
217
- q = self.conv_q(x)
218
- k = self.conv_k(c)
219
- v = self.conv_v(c)
220
-
221
- x, self.attn = self.attention(q, k, v, mask=attn_mask)
222
-
223
- x = self.conv_o(x)
224
- return x
225
-
226
- def attention(self, query, key, value, mask=None):
227
- # reshape [b, d, t] -> [b, n_h, t, d_k]
228
- b, d, t_s, t_t = (*key.size(), query.size(2))
229
- query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
230
- key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
231
- value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
232
-
233
- scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
234
- if self.window_size is not None:
235
- assert (
236
- t_s == t_t
237
- ), "Relative attention is only available for self-attention."
238
- key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
239
- rel_logits = self._matmul_with_relative_keys(
240
- query / math.sqrt(self.k_channels), key_relative_embeddings
241
- )
242
- scores_local = self._relative_position_to_absolute_position(rel_logits)
243
- scores = scores + scores_local
244
- if self.proximal_bias:
245
- assert t_s == t_t, "Proximal bias is only available for self-attention."
246
- scores = scores + self._attention_bias_proximal(t_s).to(
247
- device=scores.device, dtype=scores.dtype
248
- )
249
- if mask is not None:
250
- scores = scores.masked_fill(mask == 0, -1e4)
251
- if self.block_length is not None:
252
- assert (
253
- t_s == t_t
254
- ), "Local attention is only available for self-attention."
255
- block_mask = (
256
- torch.ones_like(scores)
257
- .triu(-self.block_length)
258
- .tril(self.block_length)
259
- )
260
- scores = scores.masked_fill(block_mask == 0, -1e4)
261
- p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
262
- p_attn = self.drop(p_attn)
263
- output = torch.matmul(p_attn, value)
264
- if self.window_size is not None:
265
- relative_weights = self._absolute_position_to_relative_position(p_attn)
266
- value_relative_embeddings = self._get_relative_embeddings(
267
- self.emb_rel_v, t_s
268
- )
269
- output = output + self._matmul_with_relative_values(
270
- relative_weights, value_relative_embeddings
271
- )
272
- output = (
273
- output.transpose(2, 3).contiguous().view(b, d, t_t)
274
- ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
275
- return output, p_attn
276
-
277
- def _matmul_with_relative_values(self, x, y):
278
- """
279
- x: [b, h, l, m]
280
- y: [h or 1, m, d]
281
- ret: [b, h, l, d]
282
- """
283
- ret = torch.matmul(x, y.unsqueeze(0))
284
- return ret
285
-
286
- def _matmul_with_relative_keys(self, x, y):
287
- """
288
- x: [b, h, l, d]
289
- y: [h or 1, m, d]
290
- ret: [b, h, l, m]
291
- """
292
- ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
293
- return ret
294
-
295
- def _get_relative_embeddings(self, relative_embeddings, length):
296
- max_relative_position = 2 * self.window_size + 1
297
- # Pad first before slice to avoid using cond ops.
298
- pad_length = max(length - (self.window_size + 1), 0)
299
- slice_start_position = max((self.window_size + 1) - length, 0)
300
- slice_end_position = slice_start_position + 2 * length - 1
301
- if pad_length > 0:
302
- padded_relative_embeddings = F.pad(
303
- relative_embeddings,
304
- commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
305
- )
306
- else:
307
- padded_relative_embeddings = relative_embeddings
308
- used_relative_embeddings = padded_relative_embeddings[
309
- :, slice_start_position:slice_end_position
310
- ]
311
- return used_relative_embeddings
312
-
313
- def _relative_position_to_absolute_position(self, x):
314
- """
315
- x: [b, h, l, 2*l-1]
316
- ret: [b, h, l, l]
317
- """
318
- batch, heads, length, _ = x.size()
319
- # Concat columns of pad to shift from relative to absolute indexing.
320
- x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
321
-
322
- # Concat extra elements so to add up to shape (len+1, 2*len-1).
323
- x_flat = x.view([batch, heads, length * 2 * length])
324
- x_flat = F.pad(
325
- x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
326
- )
327
-
328
- # Reshape and slice out the padded elements.
329
- x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
330
- :, :, :length, length - 1 :
331
- ]
332
- return x_final
333
-
334
- def _absolute_position_to_relative_position(self, x):
335
- """
336
- x: [b, h, l, l]
337
- ret: [b, h, l, 2*l-1]
338
- """
339
- batch, heads, length, _ = x.size()
340
- # padd along column
341
- x = F.pad(
342
- x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
343
- )
344
- x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
345
- # add 0's in the beginning that will skew the elements after reshape
346
- x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
347
- x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
348
- return x_final
349
-
350
- def _attention_bias_proximal(self, length):
351
- """Bias for self-attention to encourage attention to close positions.
352
- Args:
353
- length: an integer scalar.
354
- Returns:
355
- a Tensor with shape [1, 1, length, length]
356
- """
357
- r = torch.arange(length, dtype=torch.float32)
358
- diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
359
- return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
360
-
361
-
362
- class FFN(nn.Module):
363
- def __init__(
364
- self,
365
- in_channels,
366
- out_channels,
367
- filter_channels,
368
- kernel_size,
369
- p_dropout=0.0,
370
- activation=None,
371
- causal=False,
372
- ):
373
- super().__init__()
374
- self.in_channels = in_channels
375
- self.out_channels = out_channels
376
- self.filter_channels = filter_channels
377
- self.kernel_size = kernel_size
378
- self.p_dropout = p_dropout
379
- self.activation = activation
380
- self.causal = causal
381
-
382
- if causal:
383
- self.padding = self._causal_padding
384
- else:
385
- self.padding = self._same_padding
386
-
387
- self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
388
- self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
389
- self.drop = nn.Dropout(p_dropout)
390
-
391
- def forward(self, x, x_mask):
392
- x = self.conv_1(self.padding(x * x_mask))
393
- if self.activation == "gelu":
394
- x = x * torch.sigmoid(1.702 * x)
395
- else:
396
- x = torch.relu(x)
397
- x = self.drop(x)
398
- x = self.conv_2(self.padding(x * x_mask))
399
- return x * x_mask
400
-
401
- def _causal_padding(self, x):
402
- if self.kernel_size == 1:
403
- return x
404
- pad_l = self.kernel_size - 1
405
- pad_r = 0
406
- padding = [[0, 0], [0, 0], [pad_l, pad_r]]
407
- x = F.pad(x, commons.convert_pad_shape(padding))
408
- return x
409
-
410
- def _same_padding(self, x):
411
- if self.kernel_size == 1:
412
- return x
413
- pad_l = (self.kernel_size - 1) // 2
414
- pad_r = self.kernel_size // 2
415
- padding = [[0, 0], [0, 0], [pad_l, pad_r]]
416
- x = F.pad(x, commons.convert_pad_shape(padding))
417
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/infer_pack/commons.py DELETED
@@ -1,166 +0,0 @@
1
- import math
2
- import numpy as np
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
-
7
-
8
- def init_weights(m, mean=0.0, std=0.01):
9
- classname = m.__class__.__name__
10
- if classname.find("Conv") != -1:
11
- m.weight.data.normal_(mean, std)
12
-
13
-
14
- def get_padding(kernel_size, dilation=1):
15
- return int((kernel_size * dilation - dilation) / 2)
16
-
17
-
18
- def convert_pad_shape(pad_shape):
19
- l = pad_shape[::-1]
20
- pad_shape = [item for sublist in l for item in sublist]
21
- return pad_shape
22
-
23
-
24
- def kl_divergence(m_p, logs_p, m_q, logs_q):
25
- """KL(P||Q)"""
26
- kl = (logs_q - logs_p) - 0.5
27
- kl += (
28
- 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
29
- )
30
- return kl
31
-
32
-
33
- def rand_gumbel(shape):
34
- """Sample from the Gumbel distribution, protect from overflows."""
35
- uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
36
- return -torch.log(-torch.log(uniform_samples))
37
-
38
-
39
- def rand_gumbel_like(x):
40
- g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
41
- return g
42
-
43
-
44
- def slice_segments(x, ids_str, segment_size=4):
45
- ret = torch.zeros_like(x[:, :, :segment_size])
46
- for i in range(x.size(0)):
47
- idx_str = ids_str[i]
48
- idx_end = idx_str + segment_size
49
- ret[i] = x[i, :, idx_str:idx_end]
50
- return ret
51
-
52
-
53
- def slice_segments2(x, ids_str, segment_size=4):
54
- ret = torch.zeros_like(x[:, :segment_size])
55
- for i in range(x.size(0)):
56
- idx_str = ids_str[i]
57
- idx_end = idx_str + segment_size
58
- ret[i] = x[i, idx_str:idx_end]
59
- return ret
60
-
61
-
62
- def rand_slice_segments(x, x_lengths=None, segment_size=4):
63
- b, d, t = x.size()
64
- if x_lengths is None:
65
- x_lengths = t
66
- ids_str_max = x_lengths - segment_size + 1
67
- ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
68
- ret = slice_segments(x, ids_str, segment_size)
69
- return ret, ids_str
70
-
71
-
72
- def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
73
- position = torch.arange(length, dtype=torch.float)
74
- num_timescales = channels // 2
75
- log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
76
- num_timescales - 1
77
- )
78
- inv_timescales = min_timescale * torch.exp(
79
- torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
80
- )
81
- scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
82
- signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
83
- signal = F.pad(signal, [0, 0, 0, channels % 2])
84
- signal = signal.view(1, channels, length)
85
- return signal
86
-
87
-
88
- def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
89
- b, channels, length = x.size()
90
- signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
91
- return x + signal.to(dtype=x.dtype, device=x.device)
92
-
93
-
94
- def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
95
- b, channels, length = x.size()
96
- signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
97
- return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
98
-
99
-
100
- def subsequent_mask(length):
101
- mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
102
- return mask
103
-
104
-
105
- @torch.jit.script
106
- def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
107
- n_channels_int = n_channels[0]
108
- in_act = input_a + input_b
109
- t_act = torch.tanh(in_act[:, :n_channels_int, :])
110
- s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
111
- acts = t_act * s_act
112
- return acts
113
-
114
-
115
- def convert_pad_shape(pad_shape):
116
- l = pad_shape[::-1]
117
- pad_shape = [item for sublist in l for item in sublist]
118
- return pad_shape
119
-
120
-
121
- def shift_1d(x):
122
- x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
123
- return x
124
-
125
-
126
- def sequence_mask(length, max_length=None):
127
- if max_length is None:
128
- max_length = length.max()
129
- x = torch.arange(max_length, dtype=length.dtype, device=length.device)
130
- return x.unsqueeze(0) < length.unsqueeze(1)
131
-
132
-
133
- def generate_path(duration, mask):
134
- """
135
- duration: [b, 1, t_x]
136
- mask: [b, 1, t_y, t_x]
137
- """
138
- device = duration.device
139
-
140
- b, _, t_y, t_x = mask.shape
141
- cum_duration = torch.cumsum(duration, -1)
142
-
143
- cum_duration_flat = cum_duration.view(b * t_x)
144
- path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
145
- path = path.view(b, t_x, t_y)
146
- path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
147
- path = path.unsqueeze(1).transpose(2, 3) * mask
148
- return path
149
-
150
-
151
- def clip_grad_value_(parameters, clip_value, norm_type=2):
152
- if isinstance(parameters, torch.Tensor):
153
- parameters = [parameters]
154
- parameters = list(filter(lambda p: p.grad is not None, parameters))
155
- norm_type = float(norm_type)
156
- if clip_value is not None:
157
- clip_value = float(clip_value)
158
-
159
- total_norm = 0
160
- for p in parameters:
161
- param_norm = p.grad.data.norm(norm_type)
162
- total_norm += param_norm.item() ** norm_type
163
- if clip_value is not None:
164
- p.grad.data.clamp_(min=-clip_value, max=clip_value)
165
- total_norm = total_norm ** (1.0 / norm_type)
166
- return total_norm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/infer_pack/models.py DELETED
@@ -1,1124 +0,0 @@
1
- import math, pdb, os
2
- from time import time as ttime
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
- from infer_pack import modules
7
- from infer_pack import attentions
8
- from infer_pack import commons
9
- from infer_pack.commons import init_weights, get_padding
10
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
- from infer_pack.commons import init_weights
13
- import numpy as np
14
- from infer_pack import commons
15
-
16
-
17
- class TextEncoder256(nn.Module):
18
- def __init__(
19
- self,
20
- out_channels,
21
- hidden_channels,
22
- filter_channels,
23
- n_heads,
24
- n_layers,
25
- kernel_size,
26
- p_dropout,
27
- f0=True,
28
- ):
29
- super().__init__()
30
- self.out_channels = out_channels
31
- self.hidden_channels = hidden_channels
32
- self.filter_channels = filter_channels
33
- self.n_heads = n_heads
34
- self.n_layers = n_layers
35
- self.kernel_size = kernel_size
36
- self.p_dropout = p_dropout
37
- self.emb_phone = nn.Linear(256, hidden_channels)
38
- self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
- if f0 == True:
40
- self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
- self.encoder = attentions.Encoder(
42
- hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
- )
44
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
-
46
- def forward(self, phone, pitch, lengths):
47
- if pitch == None:
48
- x = self.emb_phone(phone)
49
- else:
50
- x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
- x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
- x = self.lrelu(x)
53
- x = torch.transpose(x, 1, -1) # [b, h, t]
54
- x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
- x.dtype
56
- )
57
- x = self.encoder(x * x_mask, x_mask)
58
- stats = self.proj(x) * x_mask
59
-
60
- m, logs = torch.split(stats, self.out_channels, dim=1)
61
- return m, logs, x_mask
62
-
63
-
64
- class TextEncoder768(nn.Module):
65
- def __init__(
66
- self,
67
- out_channels,
68
- hidden_channels,
69
- filter_channels,
70
- n_heads,
71
- n_layers,
72
- kernel_size,
73
- p_dropout,
74
- f0=True,
75
- ):
76
- super().__init__()
77
- self.out_channels = out_channels
78
- self.hidden_channels = hidden_channels
79
- self.filter_channels = filter_channels
80
- self.n_heads = n_heads
81
- self.n_layers = n_layers
82
- self.kernel_size = kernel_size
83
- self.p_dropout = p_dropout
84
- self.emb_phone = nn.Linear(768, hidden_channels)
85
- self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
- if f0 == True:
87
- self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
- self.encoder = attentions.Encoder(
89
- hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
- )
91
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
-
93
- def forward(self, phone, pitch, lengths):
94
- if pitch == None:
95
- x = self.emb_phone(phone)
96
- else:
97
- x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
- x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
- x = self.lrelu(x)
100
- x = torch.transpose(x, 1, -1) # [b, h, t]
101
- x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
- x.dtype
103
- )
104
- x = self.encoder(x * x_mask, x_mask)
105
- stats = self.proj(x) * x_mask
106
-
107
- m, logs = torch.split(stats, self.out_channels, dim=1)
108
- return m, logs, x_mask
109
-
110
-
111
- class ResidualCouplingBlock(nn.Module):
112
- def __init__(
113
- self,
114
- channels,
115
- hidden_channels,
116
- kernel_size,
117
- dilation_rate,
118
- n_layers,
119
- n_flows=4,
120
- gin_channels=0,
121
- ):
122
- super().__init__()
123
- self.channels = channels
124
- self.hidden_channels = hidden_channels
125
- self.kernel_size = kernel_size
126
- self.dilation_rate = dilation_rate
127
- self.n_layers = n_layers
128
- self.n_flows = n_flows
129
- self.gin_channels = gin_channels
130
-
131
- self.flows = nn.ModuleList()
132
- for i in range(n_flows):
133
- self.flows.append(
134
- modules.ResidualCouplingLayer(
135
- channels,
136
- hidden_channels,
137
- kernel_size,
138
- dilation_rate,
139
- n_layers,
140
- gin_channels=gin_channels,
141
- mean_only=True,
142
- )
143
- )
144
- self.flows.append(modules.Flip())
145
-
146
- def forward(self, x, x_mask, g=None, reverse=False):
147
- if not reverse:
148
- for flow in self.flows:
149
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
- else:
151
- for flow in reversed(self.flows):
152
- x = flow(x, x_mask, g=g, reverse=reverse)
153
- return x
154
-
155
- def remove_weight_norm(self):
156
- for i in range(self.n_flows):
157
- self.flows[i * 2].remove_weight_norm()
158
-
159
-
160
- class PosteriorEncoder(nn.Module):
161
- def __init__(
162
- self,
163
- in_channels,
164
- out_channels,
165
- hidden_channels,
166
- kernel_size,
167
- dilation_rate,
168
- n_layers,
169
- gin_channels=0,
170
- ):
171
- super().__init__()
172
- self.in_channels = in_channels
173
- self.out_channels = out_channels
174
- self.hidden_channels = hidden_channels
175
- self.kernel_size = kernel_size
176
- self.dilation_rate = dilation_rate
177
- self.n_layers = n_layers
178
- self.gin_channels = gin_channels
179
-
180
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
- self.enc = modules.WN(
182
- hidden_channels,
183
- kernel_size,
184
- dilation_rate,
185
- n_layers,
186
- gin_channels=gin_channels,
187
- )
188
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
-
190
- def forward(self, x, x_lengths, g=None):
191
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
- x.dtype
193
- )
194
- x = self.pre(x) * x_mask
195
- x = self.enc(x, x_mask, g=g)
196
- stats = self.proj(x) * x_mask
197
- m, logs = torch.split(stats, self.out_channels, dim=1)
198
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
- return z, m, logs, x_mask
200
-
201
- def remove_weight_norm(self):
202
- self.enc.remove_weight_norm()
203
-
204
-
205
- class Generator(torch.nn.Module):
206
- def __init__(
207
- self,
208
- initial_channel,
209
- resblock,
210
- resblock_kernel_sizes,
211
- resblock_dilation_sizes,
212
- upsample_rates,
213
- upsample_initial_channel,
214
- upsample_kernel_sizes,
215
- gin_channels=0,
216
- ):
217
- super(Generator, self).__init__()
218
- self.num_kernels = len(resblock_kernel_sizes)
219
- self.num_upsamples = len(upsample_rates)
220
- self.conv_pre = Conv1d(
221
- initial_channel, upsample_initial_channel, 7, 1, padding=3
222
- )
223
- resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
-
225
- self.ups = nn.ModuleList()
226
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
- self.ups.append(
228
- weight_norm(
229
- ConvTranspose1d(
230
- upsample_initial_channel // (2**i),
231
- upsample_initial_channel // (2 ** (i + 1)),
232
- k,
233
- u,
234
- padding=(k - u) // 2,
235
- )
236
- )
237
- )
238
-
239
- self.resblocks = nn.ModuleList()
240
- for i in range(len(self.ups)):
241
- ch = upsample_initial_channel // (2 ** (i + 1))
242
- for j, (k, d) in enumerate(
243
- zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
- ):
245
- self.resblocks.append(resblock(ch, k, d))
246
-
247
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
- self.ups.apply(init_weights)
249
-
250
- if gin_channels != 0:
251
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
-
253
- def forward(self, x, g=None):
254
- x = self.conv_pre(x)
255
- if g is not None:
256
- x = x + self.cond(g)
257
-
258
- for i in range(self.num_upsamples):
259
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
- x = self.ups[i](x)
261
- xs = None
262
- for j in range(self.num_kernels):
263
- if xs is None:
264
- xs = self.resblocks[i * self.num_kernels + j](x)
265
- else:
266
- xs += self.resblocks[i * self.num_kernels + j](x)
267
- x = xs / self.num_kernels
268
- x = F.leaky_relu(x)
269
- x = self.conv_post(x)
270
- x = torch.tanh(x)
271
-
272
- return x
273
-
274
- def remove_weight_norm(self):
275
- for l in self.ups:
276
- remove_weight_norm(l)
277
- for l in self.resblocks:
278
- l.remove_weight_norm()
279
-
280
-
281
- class SineGen(torch.nn.Module):
282
- """Definition of sine generator
283
- SineGen(samp_rate, harmonic_num = 0,
284
- sine_amp = 0.1, noise_std = 0.003,
285
- voiced_threshold = 0,
286
- flag_for_pulse=False)
287
- samp_rate: sampling rate in Hz
288
- harmonic_num: number of harmonic overtones (default 0)
289
- sine_amp: amplitude of sine-wavefrom (default 0.1)
290
- noise_std: std of Gaussian noise (default 0.003)
291
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
- Note: when flag_for_pulse is True, the first time step of a voiced
294
- segment is always sin(np.pi) or cos(0)
295
- """
296
-
297
- def __init__(
298
- self,
299
- samp_rate,
300
- harmonic_num=0,
301
- sine_amp=0.1,
302
- noise_std=0.003,
303
- voiced_threshold=0,
304
- flag_for_pulse=False,
305
- ):
306
- super(SineGen, self).__init__()
307
- self.sine_amp = sine_amp
308
- self.noise_std = noise_std
309
- self.harmonic_num = harmonic_num
310
- self.dim = self.harmonic_num + 1
311
- self.sampling_rate = samp_rate
312
- self.voiced_threshold = voiced_threshold
313
-
314
- def _f02uv(self, f0):
315
- # generate uv signal
316
- uv = torch.ones_like(f0)
317
- uv = uv * (f0 > self.voiced_threshold)
318
- return uv
319
-
320
- def forward(self, f0, upp):
321
- """sine_tensor, uv = forward(f0)
322
- input F0: tensor(batchsize=1, length, dim=1)
323
- f0 for unvoiced steps should be 0
324
- output sine_tensor: tensor(batchsize=1, length, dim)
325
- output uv: tensor(batchsize=1, length, 1)
326
- """
327
- with torch.no_grad():
328
- f0 = f0[:, None].transpose(1, 2)
329
- f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
330
- # fundamental component
331
- f0_buf[:, :, 0] = f0[:, :, 0]
332
- for idx in np.arange(self.harmonic_num):
333
- f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
334
- idx + 2
335
- ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
336
- rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
337
- rand_ini = torch.rand(
338
- f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
339
- )
340
- rand_ini[:, 0] = 0
341
- rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
342
- tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
343
- tmp_over_one *= upp
344
- tmp_over_one = F.interpolate(
345
- tmp_over_one.transpose(2, 1),
346
- scale_factor=upp,
347
- mode="linear",
348
- align_corners=True,
349
- ).transpose(2, 1)
350
- rad_values = F.interpolate(
351
- rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
352
- ).transpose(
353
- 2, 1
354
- ) #######
355
- tmp_over_one %= 1
356
- tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
357
- cumsum_shift = torch.zeros_like(rad_values)
358
- cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
359
- sine_waves = torch.sin(
360
- torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
361
- )
362
- sine_waves = sine_waves * self.sine_amp
363
- uv = self._f02uv(f0)
364
- uv = F.interpolate(
365
- uv.transpose(2, 1), scale_factor=upp, mode="nearest"
366
- ).transpose(2, 1)
367
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
368
- noise = noise_amp * torch.randn_like(sine_waves)
369
- sine_waves = sine_waves * uv + noise
370
- return sine_waves, uv, noise
371
-
372
-
373
- class SourceModuleHnNSF(torch.nn.Module):
374
- """SourceModule for hn-nsf
375
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
376
- add_noise_std=0.003, voiced_threshod=0)
377
- sampling_rate: sampling_rate in Hz
378
- harmonic_num: number of harmonic above F0 (default: 0)
379
- sine_amp: amplitude of sine source signal (default: 0.1)
380
- add_noise_std: std of additive Gaussian noise (default: 0.003)
381
- note that amplitude of noise in unvoiced is decided
382
- by sine_amp
383
- voiced_threshold: threhold to set U/V given F0 (default: 0)
384
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
385
- F0_sampled (batchsize, length, 1)
386
- Sine_source (batchsize, length, 1)
387
- noise_source (batchsize, length 1)
388
- uv (batchsize, length, 1)
389
- """
390
-
391
- def __init__(
392
- self,
393
- sampling_rate,
394
- harmonic_num=0,
395
- sine_amp=0.1,
396
- add_noise_std=0.003,
397
- voiced_threshod=0,
398
- is_half=True,
399
- ):
400
- super(SourceModuleHnNSF, self).__init__()
401
-
402
- self.sine_amp = sine_amp
403
- self.noise_std = add_noise_std
404
- self.is_half = is_half
405
- # to produce sine waveforms
406
- self.l_sin_gen = SineGen(
407
- sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
408
- )
409
-
410
- # to merge source harmonics into a single excitation
411
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
412
- self.l_tanh = torch.nn.Tanh()
413
-
414
- def forward(self, x, upp=None):
415
- sine_wavs, uv, _ = self.l_sin_gen(x, upp)
416
- if self.is_half:
417
- sine_wavs = sine_wavs.half()
418
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
419
- return sine_merge, None, None # noise, uv
420
-
421
-
422
- class GeneratorNSF(torch.nn.Module):
423
- def __init__(
424
- self,
425
- initial_channel,
426
- resblock,
427
- resblock_kernel_sizes,
428
- resblock_dilation_sizes,
429
- upsample_rates,
430
- upsample_initial_channel,
431
- upsample_kernel_sizes,
432
- gin_channels,
433
- sr,
434
- is_half=False,
435
- ):
436
- super(GeneratorNSF, self).__init__()
437
- self.num_kernels = len(resblock_kernel_sizes)
438
- self.num_upsamples = len(upsample_rates)
439
-
440
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
441
- self.m_source = SourceModuleHnNSF(
442
- sampling_rate=sr, harmonic_num=0, is_half=is_half
443
- )
444
- self.noise_convs = nn.ModuleList()
445
- self.conv_pre = Conv1d(
446
- initial_channel, upsample_initial_channel, 7, 1, padding=3
447
- )
448
- resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
449
-
450
- self.ups = nn.ModuleList()
451
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
452
- c_cur = upsample_initial_channel // (2 ** (i + 1))
453
- self.ups.append(
454
- weight_norm(
455
- ConvTranspose1d(
456
- upsample_initial_channel // (2**i),
457
- upsample_initial_channel // (2 ** (i + 1)),
458
- k,
459
- u,
460
- padding=(k - u) // 2,
461
- )
462
- )
463
- )
464
- if i + 1 < len(upsample_rates):
465
- stride_f0 = np.prod(upsample_rates[i + 1 :])
466
- self.noise_convs.append(
467
- Conv1d(
468
- 1,
469
- c_cur,
470
- kernel_size=stride_f0 * 2,
471
- stride=stride_f0,
472
- padding=stride_f0 // 2,
473
- )
474
- )
475
- else:
476
- self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
477
-
478
- self.resblocks = nn.ModuleList()
479
- for i in range(len(self.ups)):
480
- ch = upsample_initial_channel // (2 ** (i + 1))
481
- for j, (k, d) in enumerate(
482
- zip(resblock_kernel_sizes, resblock_dilation_sizes)
483
- ):
484
- self.resblocks.append(resblock(ch, k, d))
485
-
486
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
487
- self.ups.apply(init_weights)
488
-
489
- if gin_channels != 0:
490
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
491
-
492
- self.upp = np.prod(upsample_rates)
493
-
494
- def forward(self, x, f0, g=None):
495
- har_source, noi_source, uv = self.m_source(f0, self.upp)
496
- har_source = har_source.transpose(1, 2)
497
- x = self.conv_pre(x)
498
- if g is not None:
499
- x = x + self.cond(g)
500
-
501
- for i in range(self.num_upsamples):
502
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
503
- x = self.ups[i](x)
504
- x_source = self.noise_convs[i](har_source)
505
- x = x + x_source
506
- xs = None
507
- for j in range(self.num_kernels):
508
- if xs is None:
509
- xs = self.resblocks[i * self.num_kernels + j](x)
510
- else:
511
- xs += self.resblocks[i * self.num_kernels + j](x)
512
- x = xs / self.num_kernels
513
- x = F.leaky_relu(x)
514
- x = self.conv_post(x)
515
- x = torch.tanh(x)
516
- return x
517
-
518
- def remove_weight_norm(self):
519
- for l in self.ups:
520
- remove_weight_norm(l)
521
- for l in self.resblocks:
522
- l.remove_weight_norm()
523
-
524
-
525
- sr2sr = {
526
- "32k": 32000,
527
- "40k": 40000,
528
- "48k": 48000,
529
- }
530
-
531
-
532
- class SynthesizerTrnMs256NSFsid(nn.Module):
533
- def __init__(
534
- self,
535
- spec_channels,
536
- segment_size,
537
- inter_channels,
538
- hidden_channels,
539
- filter_channels,
540
- n_heads,
541
- n_layers,
542
- kernel_size,
543
- p_dropout,
544
- resblock,
545
- resblock_kernel_sizes,
546
- resblock_dilation_sizes,
547
- upsample_rates,
548
- upsample_initial_channel,
549
- upsample_kernel_sizes,
550
- spk_embed_dim,
551
- gin_channels,
552
- sr,
553
- **kwargs
554
- ):
555
- super().__init__()
556
- if type(sr) == type("strr"):
557
- sr = sr2sr[sr]
558
- self.spec_channels = spec_channels
559
- self.inter_channels = inter_channels
560
- self.hidden_channels = hidden_channels
561
- self.filter_channels = filter_channels
562
- self.n_heads = n_heads
563
- self.n_layers = n_layers
564
- self.kernel_size = kernel_size
565
- self.p_dropout = p_dropout
566
- self.resblock = resblock
567
- self.resblock_kernel_sizes = resblock_kernel_sizes
568
- self.resblock_dilation_sizes = resblock_dilation_sizes
569
- self.upsample_rates = upsample_rates
570
- self.upsample_initial_channel = upsample_initial_channel
571
- self.upsample_kernel_sizes = upsample_kernel_sizes
572
- self.segment_size = segment_size
573
- self.gin_channels = gin_channels
574
- # self.hop_length = hop_length#
575
- self.spk_embed_dim = spk_embed_dim
576
- self.enc_p = TextEncoder256(
577
- inter_channels,
578
- hidden_channels,
579
- filter_channels,
580
- n_heads,
581
- n_layers,
582
- kernel_size,
583
- p_dropout,
584
- )
585
- self.dec = GeneratorNSF(
586
- inter_channels,
587
- resblock,
588
- resblock_kernel_sizes,
589
- resblock_dilation_sizes,
590
- upsample_rates,
591
- upsample_initial_channel,
592
- upsample_kernel_sizes,
593
- gin_channels=gin_channels,
594
- sr=sr,
595
- is_half=kwargs["is_half"],
596
- )
597
- self.enc_q = PosteriorEncoder(
598
- spec_channels,
599
- inter_channels,
600
- hidden_channels,
601
- 5,
602
- 1,
603
- 16,
604
- gin_channels=gin_channels,
605
- )
606
- self.flow = ResidualCouplingBlock(
607
- inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
608
- )
609
- self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
610
- print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
611
-
612
- def remove_weight_norm(self):
613
- self.dec.remove_weight_norm()
614
- self.flow.remove_weight_norm()
615
- self.enc_q.remove_weight_norm()
616
-
617
- def forward(
618
- self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
619
- ): # 这里ds是id,[bs,1]
620
- # print(1,pitch.shape)#[bs,t]
621
- g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
622
- m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
623
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
624
- z_p = self.flow(z, y_mask, g=g)
625
- z_slice, ids_slice = commons.rand_slice_segments(
626
- z, y_lengths, self.segment_size
627
- )
628
- # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
629
- pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
630
- # print(-2,pitchf.shape,z_slice.shape)
631
- o = self.dec(z_slice, pitchf, g=g)
632
- return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
633
-
634
- def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
635
- g = self.emb_g(sid).unsqueeze(-1)
636
- m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
637
- z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
638
- z = self.flow(z_p, x_mask, g=g, reverse=True)
639
- o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
640
- return o, x_mask, (z, z_p, m_p, logs_p)
641
-
642
-
643
- class SynthesizerTrnMs768NSFsid(nn.Module):
644
- def __init__(
645
- self,
646
- spec_channels,
647
- segment_size,
648
- inter_channels,
649
- hidden_channels,
650
- filter_channels,
651
- n_heads,
652
- n_layers,
653
- kernel_size,
654
- p_dropout,
655
- resblock,
656
- resblock_kernel_sizes,
657
- resblock_dilation_sizes,
658
- upsample_rates,
659
- upsample_initial_channel,
660
- upsample_kernel_sizes,
661
- spk_embed_dim,
662
- gin_channels,
663
- sr,
664
- **kwargs
665
- ):
666
- super().__init__()
667
- if type(sr) == type("strr"):
668
- sr = sr2sr[sr]
669
- self.spec_channels = spec_channels
670
- self.inter_channels = inter_channels
671
- self.hidden_channels = hidden_channels
672
- self.filter_channels = filter_channels
673
- self.n_heads = n_heads
674
- self.n_layers = n_layers
675
- self.kernel_size = kernel_size
676
- self.p_dropout = p_dropout
677
- self.resblock = resblock
678
- self.resblock_kernel_sizes = resblock_kernel_sizes
679
- self.resblock_dilation_sizes = resblock_dilation_sizes
680
- self.upsample_rates = upsample_rates
681
- self.upsample_initial_channel = upsample_initial_channel
682
- self.upsample_kernel_sizes = upsample_kernel_sizes
683
- self.segment_size = segment_size
684
- self.gin_channels = gin_channels
685
- # self.hop_length = hop_length#
686
- self.spk_embed_dim = spk_embed_dim
687
- self.enc_p = TextEncoder768(
688
- inter_channels,
689
- hidden_channels,
690
- filter_channels,
691
- n_heads,
692
- n_layers,
693
- kernel_size,
694
- p_dropout,
695
- )
696
- self.dec = GeneratorNSF(
697
- inter_channels,
698
- resblock,
699
- resblock_kernel_sizes,
700
- resblock_dilation_sizes,
701
- upsample_rates,
702
- upsample_initial_channel,
703
- upsample_kernel_sizes,
704
- gin_channels=gin_channels,
705
- sr=sr,
706
- is_half=kwargs["is_half"],
707
- )
708
- self.enc_q = PosteriorEncoder(
709
- spec_channels,
710
- inter_channels,
711
- hidden_channels,
712
- 5,
713
- 1,
714
- 16,
715
- gin_channels=gin_channels,
716
- )
717
- self.flow = ResidualCouplingBlock(
718
- inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
719
- )
720
- self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
721
- print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
722
-
723
- def remove_weight_norm(self):
724
- self.dec.remove_weight_norm()
725
- self.flow.remove_weight_norm()
726
- self.enc_q.remove_weight_norm()
727
-
728
- def forward(
729
- self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
730
- ): # 这里ds是id,[bs,1]
731
- # print(1,pitch.shape)#[bs,t]
732
- g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
733
- m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
734
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
735
- z_p = self.flow(z, y_mask, g=g)
736
- z_slice, ids_slice = commons.rand_slice_segments(
737
- z, y_lengths, self.segment_size
738
- )
739
- # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
740
- pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
741
- # print(-2,pitchf.shape,z_slice.shape)
742
- o = self.dec(z_slice, pitchf, g=g)
743
- return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
744
-
745
- def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
746
- g = self.emb_g(sid).unsqueeze(-1)
747
- m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
748
- z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
749
- z = self.flow(z_p, x_mask, g=g, reverse=True)
750
- o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
751
- return o, x_mask, (z, z_p, m_p, logs_p)
752
-
753
-
754
- class SynthesizerTrnMs256NSFsid_nono(nn.Module):
755
- def __init__(
756
- self,
757
- spec_channels,
758
- segment_size,
759
- inter_channels,
760
- hidden_channels,
761
- filter_channels,
762
- n_heads,
763
- n_layers,
764
- kernel_size,
765
- p_dropout,
766
- resblock,
767
- resblock_kernel_sizes,
768
- resblock_dilation_sizes,
769
- upsample_rates,
770
- upsample_initial_channel,
771
- upsample_kernel_sizes,
772
- spk_embed_dim,
773
- gin_channels,
774
- sr=None,
775
- **kwargs
776
- ):
777
- super().__init__()
778
- self.spec_channels = spec_channels
779
- self.inter_channels = inter_channels
780
- self.hidden_channels = hidden_channels
781
- self.filter_channels = filter_channels
782
- self.n_heads = n_heads
783
- self.n_layers = n_layers
784
- self.kernel_size = kernel_size
785
- self.p_dropout = p_dropout
786
- self.resblock = resblock
787
- self.resblock_kernel_sizes = resblock_kernel_sizes
788
- self.resblock_dilation_sizes = resblock_dilation_sizes
789
- self.upsample_rates = upsample_rates
790
- self.upsample_initial_channel = upsample_initial_channel
791
- self.upsample_kernel_sizes = upsample_kernel_sizes
792
- self.segment_size = segment_size
793
- self.gin_channels = gin_channels
794
- # self.hop_length = hop_length#
795
- self.spk_embed_dim = spk_embed_dim
796
- self.enc_p = TextEncoder256(
797
- inter_channels,
798
- hidden_channels,
799
- filter_channels,
800
- n_heads,
801
- n_layers,
802
- kernel_size,
803
- p_dropout,
804
- f0=False,
805
- )
806
- self.dec = Generator(
807
- inter_channels,
808
- resblock,
809
- resblock_kernel_sizes,
810
- resblock_dilation_sizes,
811
- upsample_rates,
812
- upsample_initial_channel,
813
- upsample_kernel_sizes,
814
- gin_channels=gin_channels,
815
- )
816
- self.enc_q = PosteriorEncoder(
817
- spec_channels,
818
- inter_channels,
819
- hidden_channels,
820
- 5,
821
- 1,
822
- 16,
823
- gin_channels=gin_channels,
824
- )
825
- self.flow = ResidualCouplingBlock(
826
- inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
827
- )
828
- self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
829
- print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
830
-
831
- def remove_weight_norm(self):
832
- self.dec.remove_weight_norm()
833
- self.flow.remove_weight_norm()
834
- self.enc_q.remove_weight_norm()
835
-
836
- def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
837
- g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
838
- m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
839
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
840
- z_p = self.flow(z, y_mask, g=g)
841
- z_slice, ids_slice = commons.rand_slice_segments(
842
- z, y_lengths, self.segment_size
843
- )
844
- o = self.dec(z_slice, g=g)
845
- return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
846
-
847
- def infer(self, phone, phone_lengths, sid, max_len=None):
848
- g = self.emb_g(sid).unsqueeze(-1)
849
- m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
850
- z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
851
- z = self.flow(z_p, x_mask, g=g, reverse=True)
852
- o = self.dec((z * x_mask)[:, :, :max_len], g=g)
853
- return o, x_mask, (z, z_p, m_p, logs_p)
854
-
855
-
856
- class SynthesizerTrnMs768NSFsid_nono(nn.Module):
857
- def __init__(
858
- self,
859
- spec_channels,
860
- segment_size,
861
- inter_channels,
862
- hidden_channels,
863
- filter_channels,
864
- n_heads,
865
- n_layers,
866
- kernel_size,
867
- p_dropout,
868
- resblock,
869
- resblock_kernel_sizes,
870
- resblock_dilation_sizes,
871
- upsample_rates,
872
- upsample_initial_channel,
873
- upsample_kernel_sizes,
874
- spk_embed_dim,
875
- gin_channels,
876
- sr=None,
877
- **kwargs
878
- ):
879
- super().__init__()
880
- self.spec_channels = spec_channels
881
- self.inter_channels = inter_channels
882
- self.hidden_channels = hidden_channels
883
- self.filter_channels = filter_channels
884
- self.n_heads = n_heads
885
- self.n_layers = n_layers
886
- self.kernel_size = kernel_size
887
- self.p_dropout = p_dropout
888
- self.resblock = resblock
889
- self.resblock_kernel_sizes = resblock_kernel_sizes
890
- self.resblock_dilation_sizes = resblock_dilation_sizes
891
- self.upsample_rates = upsample_rates
892
- self.upsample_initial_channel = upsample_initial_channel
893
- self.upsample_kernel_sizes = upsample_kernel_sizes
894
- self.segment_size = segment_size
895
- self.gin_channels = gin_channels
896
- # self.hop_length = hop_length#
897
- self.spk_embed_dim = spk_embed_dim
898
- self.enc_p = TextEncoder768(
899
- inter_channels,
900
- hidden_channels,
901
- filter_channels,
902
- n_heads,
903
- n_layers,
904
- kernel_size,
905
- p_dropout,
906
- f0=False,
907
- )
908
- self.dec = Generator(
909
- inter_channels,
910
- resblock,
911
- resblock_kernel_sizes,
912
- resblock_dilation_sizes,
913
- upsample_rates,
914
- upsample_initial_channel,
915
- upsample_kernel_sizes,
916
- gin_channels=gin_channels,
917
- )
918
- self.enc_q = PosteriorEncoder(
919
- spec_channels,
920
- inter_channels,
921
- hidden_channels,
922
- 5,
923
- 1,
924
- 16,
925
- gin_channels=gin_channels,
926
- )
927
- self.flow = ResidualCouplingBlock(
928
- inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
929
- )
930
- self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
931
- print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
932
-
933
- def remove_weight_norm(self):
934
- self.dec.remove_weight_norm()
935
- self.flow.remove_weight_norm()
936
- self.enc_q.remove_weight_norm()
937
-
938
- def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
939
- g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
940
- m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
941
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
942
- z_p = self.flow(z, y_mask, g=g)
943
- z_slice, ids_slice = commons.rand_slice_segments(
944
- z, y_lengths, self.segment_size
945
- )
946
- o = self.dec(z_slice, g=g)
947
- return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
948
-
949
- def infer(self, phone, phone_lengths, sid, max_len=None):
950
- g = self.emb_g(sid).unsqueeze(-1)
951
- m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
952
- z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
953
- z = self.flow(z_p, x_mask, g=g, reverse=True)
954
- o = self.dec((z * x_mask)[:, :, :max_len], g=g)
955
- return o, x_mask, (z, z_p, m_p, logs_p)
956
-
957
-
958
- class MultiPeriodDiscriminator(torch.nn.Module):
959
- def __init__(self, use_spectral_norm=False):
960
- super(MultiPeriodDiscriminator, self).__init__()
961
- periods = [2, 3, 5, 7, 11, 17]
962
- # periods = [3, 5, 7, 11, 17, 23, 37]
963
-
964
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
965
- discs = discs + [
966
- DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
967
- ]
968
- self.discriminators = nn.ModuleList(discs)
969
-
970
- def forward(self, y, y_hat):
971
- y_d_rs = [] #
972
- y_d_gs = []
973
- fmap_rs = []
974
- fmap_gs = []
975
- for i, d in enumerate(self.discriminators):
976
- y_d_r, fmap_r = d(y)
977
- y_d_g, fmap_g = d(y_hat)
978
- # for j in range(len(fmap_r)):
979
- # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
980
- y_d_rs.append(y_d_r)
981
- y_d_gs.append(y_d_g)
982
- fmap_rs.append(fmap_r)
983
- fmap_gs.append(fmap_g)
984
-
985
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
986
-
987
-
988
- class MultiPeriodDiscriminatorV2(torch.nn.Module):
989
- def __init__(self, use_spectral_norm=False):
990
- super(MultiPeriodDiscriminatorV2, self).__init__()
991
- # periods = [2, 3, 5, 7, 11, 17]
992
- periods = [2, 3, 5, 7, 11, 17, 23, 37]
993
-
994
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
995
- discs = discs + [
996
- DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
997
- ]
998
- self.discriminators = nn.ModuleList(discs)
999
-
1000
- def forward(self, y, y_hat):
1001
- y_d_rs = [] #
1002
- y_d_gs = []
1003
- fmap_rs = []
1004
- fmap_gs = []
1005
- for i, d in enumerate(self.discriminators):
1006
- y_d_r, fmap_r = d(y)
1007
- y_d_g, fmap_g = d(y_hat)
1008
- # for j in range(len(fmap_r)):
1009
- # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
1010
- y_d_rs.append(y_d_r)
1011
- y_d_gs.append(y_d_g)
1012
- fmap_rs.append(fmap_r)
1013
- fmap_gs.append(fmap_g)
1014
-
1015
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
1016
-
1017
-
1018
- class DiscriminatorS(torch.nn.Module):
1019
- def __init__(self, use_spectral_norm=False):
1020
- super(DiscriminatorS, self).__init__()
1021
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1022
- self.convs = nn.ModuleList(
1023
- [
1024
- norm_f(Conv1d(1, 16, 15, 1, padding=7)),
1025
- norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
1026
- norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
1027
- norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
1028
- norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
1029
- norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
1030
- ]
1031
- )
1032
- self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
1033
-
1034
- def forward(self, x):
1035
- fmap = []
1036
-
1037
- for l in self.convs:
1038
- x = l(x)
1039
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
1040
- fmap.append(x)
1041
- x = self.conv_post(x)
1042
- fmap.append(x)
1043
- x = torch.flatten(x, 1, -1)
1044
-
1045
- return x, fmap
1046
-
1047
-
1048
- class DiscriminatorP(torch.nn.Module):
1049
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
1050
- super(DiscriminatorP, self).__init__()
1051
- self.period = period
1052
- self.use_spectral_norm = use_spectral_norm
1053
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1054
- self.convs = nn.ModuleList(
1055
- [
1056
- norm_f(
1057
- Conv2d(
1058
- 1,
1059
- 32,
1060
- (kernel_size, 1),
1061
- (stride, 1),
1062
- padding=(get_padding(kernel_size, 1), 0),
1063
- )
1064
- ),
1065
- norm_f(
1066
- Conv2d(
1067
- 32,
1068
- 128,
1069
- (kernel_size, 1),
1070
- (stride, 1),
1071
- padding=(get_padding(kernel_size, 1), 0),
1072
- )
1073
- ),
1074
- norm_f(
1075
- Conv2d(
1076
- 128,
1077
- 512,
1078
- (kernel_size, 1),
1079
- (stride, 1),
1080
- padding=(get_padding(kernel_size, 1), 0),
1081
- )
1082
- ),
1083
- norm_f(
1084
- Conv2d(
1085
- 512,
1086
- 1024,
1087
- (kernel_size, 1),
1088
- (stride, 1),
1089
- padding=(get_padding(kernel_size, 1), 0),
1090
- )
1091
- ),
1092
- norm_f(
1093
- Conv2d(
1094
- 1024,
1095
- 1024,
1096
- (kernel_size, 1),
1097
- 1,
1098
- padding=(get_padding(kernel_size, 1), 0),
1099
- )
1100
- ),
1101
- ]
1102
- )
1103
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
1104
-
1105
- def forward(self, x):
1106
- fmap = []
1107
-
1108
- # 1d to 2d
1109
- b, c, t = x.shape
1110
- if t % self.period != 0: # pad first
1111
- n_pad = self.period - (t % self.period)
1112
- x = F.pad(x, (0, n_pad), "reflect")
1113
- t = t + n_pad
1114
- x = x.view(b, c, t // self.period, self.period)
1115
-
1116
- for l in self.convs:
1117
- x = l(x)
1118
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
1119
- fmap.append(x)
1120
- x = self.conv_post(x)
1121
- fmap.append(x)
1122
- x = torch.flatten(x, 1, -1)
1123
-
1124
- return x, fmap
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/infer_pack/models_onnx.py DELETED
@@ -1,818 +0,0 @@
1
- import math, pdb, os
2
- from time import time as ttime
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
- from infer_pack import modules
7
- from infer_pack import attentions
8
- from infer_pack import commons
9
- from infer_pack.commons import init_weights, get_padding
10
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
- from infer_pack.commons import init_weights
13
- import numpy as np
14
- from infer_pack import commons
15
-
16
-
17
- class TextEncoder256(nn.Module):
18
- def __init__(
19
- self,
20
- out_channels,
21
- hidden_channels,
22
- filter_channels,
23
- n_heads,
24
- n_layers,
25
- kernel_size,
26
- p_dropout,
27
- f0=True,
28
- ):
29
- super().__init__()
30
- self.out_channels = out_channels
31
- self.hidden_channels = hidden_channels
32
- self.filter_channels = filter_channels
33
- self.n_heads = n_heads
34
- self.n_layers = n_layers
35
- self.kernel_size = kernel_size
36
- self.p_dropout = p_dropout
37
- self.emb_phone = nn.Linear(256, hidden_channels)
38
- self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
- if f0 == True:
40
- self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
- self.encoder = attentions.Encoder(
42
- hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
- )
44
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
-
46
- def forward(self, phone, pitch, lengths):
47
- if pitch == None:
48
- x = self.emb_phone(phone)
49
- else:
50
- x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
- x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
- x = self.lrelu(x)
53
- x = torch.transpose(x, 1, -1) # [b, h, t]
54
- x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
- x.dtype
56
- )
57
- x = self.encoder(x * x_mask, x_mask)
58
- stats = self.proj(x) * x_mask
59
-
60
- m, logs = torch.split(stats, self.out_channels, dim=1)
61
- return m, logs, x_mask
62
-
63
-
64
- class TextEncoder768(nn.Module):
65
- def __init__(
66
- self,
67
- out_channels,
68
- hidden_channels,
69
- filter_channels,
70
- n_heads,
71
- n_layers,
72
- kernel_size,
73
- p_dropout,
74
- f0=True,
75
- ):
76
- super().__init__()
77
- self.out_channels = out_channels
78
- self.hidden_channels = hidden_channels
79
- self.filter_channels = filter_channels
80
- self.n_heads = n_heads
81
- self.n_layers = n_layers
82
- self.kernel_size = kernel_size
83
- self.p_dropout = p_dropout
84
- self.emb_phone = nn.Linear(768, hidden_channels)
85
- self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
- if f0 == True:
87
- self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
- self.encoder = attentions.Encoder(
89
- hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
- )
91
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
-
93
- def forward(self, phone, pitch, lengths):
94
- if pitch == None:
95
- x = self.emb_phone(phone)
96
- else:
97
- x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
- x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
- x = self.lrelu(x)
100
- x = torch.transpose(x, 1, -1) # [b, h, t]
101
- x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
- x.dtype
103
- )
104
- x = self.encoder(x * x_mask, x_mask)
105
- stats = self.proj(x) * x_mask
106
-
107
- m, logs = torch.split(stats, self.out_channels, dim=1)
108
- return m, logs, x_mask
109
-
110
-
111
- class ResidualCouplingBlock(nn.Module):
112
- def __init__(
113
- self,
114
- channels,
115
- hidden_channels,
116
- kernel_size,
117
- dilation_rate,
118
- n_layers,
119
- n_flows=4,
120
- gin_channels=0,
121
- ):
122
- super().__init__()
123
- self.channels = channels
124
- self.hidden_channels = hidden_channels
125
- self.kernel_size = kernel_size
126
- self.dilation_rate = dilation_rate
127
- self.n_layers = n_layers
128
- self.n_flows = n_flows
129
- self.gin_channels = gin_channels
130
-
131
- self.flows = nn.ModuleList()
132
- for i in range(n_flows):
133
- self.flows.append(
134
- modules.ResidualCouplingLayer(
135
- channels,
136
- hidden_channels,
137
- kernel_size,
138
- dilation_rate,
139
- n_layers,
140
- gin_channels=gin_channels,
141
- mean_only=True,
142
- )
143
- )
144
- self.flows.append(modules.Flip())
145
-
146
- def forward(self, x, x_mask, g=None, reverse=False):
147
- if not reverse:
148
- for flow in self.flows:
149
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
- else:
151
- for flow in reversed(self.flows):
152
- x = flow(x, x_mask, g=g, reverse=reverse)
153
- return x
154
-
155
- def remove_weight_norm(self):
156
- for i in range(self.n_flows):
157
- self.flows[i * 2].remove_weight_norm()
158
-
159
-
160
- class PosteriorEncoder(nn.Module):
161
- def __init__(
162
- self,
163
- in_channels,
164
- out_channels,
165
- hidden_channels,
166
- kernel_size,
167
- dilation_rate,
168
- n_layers,
169
- gin_channels=0,
170
- ):
171
- super().__init__()
172
- self.in_channels = in_channels
173
- self.out_channels = out_channels
174
- self.hidden_channels = hidden_channels
175
- self.kernel_size = kernel_size
176
- self.dilation_rate = dilation_rate
177
- self.n_layers = n_layers
178
- self.gin_channels = gin_channels
179
-
180
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
- self.enc = modules.WN(
182
- hidden_channels,
183
- kernel_size,
184
- dilation_rate,
185
- n_layers,
186
- gin_channels=gin_channels,
187
- )
188
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
-
190
- def forward(self, x, x_lengths, g=None):
191
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
- x.dtype
193
- )
194
- x = self.pre(x) * x_mask
195
- x = self.enc(x, x_mask, g=g)
196
- stats = self.proj(x) * x_mask
197
- m, logs = torch.split(stats, self.out_channels, dim=1)
198
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
- return z, m, logs, x_mask
200
-
201
- def remove_weight_norm(self):
202
- self.enc.remove_weight_norm()
203
-
204
-
205
- class Generator(torch.nn.Module):
206
- def __init__(
207
- self,
208
- initial_channel,
209
- resblock,
210
- resblock_kernel_sizes,
211
- resblock_dilation_sizes,
212
- upsample_rates,
213
- upsample_initial_channel,
214
- upsample_kernel_sizes,
215
- gin_channels=0,
216
- ):
217
- super(Generator, self).__init__()
218
- self.num_kernels = len(resblock_kernel_sizes)
219
- self.num_upsamples = len(upsample_rates)
220
- self.conv_pre = Conv1d(
221
- initial_channel, upsample_initial_channel, 7, 1, padding=3
222
- )
223
- resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
-
225
- self.ups = nn.ModuleList()
226
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
- self.ups.append(
228
- weight_norm(
229
- ConvTranspose1d(
230
- upsample_initial_channel // (2**i),
231
- upsample_initial_channel // (2 ** (i + 1)),
232
- k,
233
- u,
234
- padding=(k - u) // 2,
235
- )
236
- )
237
- )
238
-
239
- self.resblocks = nn.ModuleList()
240
- for i in range(len(self.ups)):
241
- ch = upsample_initial_channel // (2 ** (i + 1))
242
- for j, (k, d) in enumerate(
243
- zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
- ):
245
- self.resblocks.append(resblock(ch, k, d))
246
-
247
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
- self.ups.apply(init_weights)
249
-
250
- if gin_channels != 0:
251
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
-
253
- def forward(self, x, g=None):
254
- x = self.conv_pre(x)
255
- if g is not None:
256
- x = x + self.cond(g)
257
-
258
- for i in range(self.num_upsamples):
259
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
- x = self.ups[i](x)
261
- xs = None
262
- for j in range(self.num_kernels):
263
- if xs is None:
264
- xs = self.resblocks[i * self.num_kernels + j](x)
265
- else:
266
- xs += self.resblocks[i * self.num_kernels + j](x)
267
- x = xs / self.num_kernels
268
- x = F.leaky_relu(x)
269
- x = self.conv_post(x)
270
- x = torch.tanh(x)
271
-
272
- return x
273
-
274
- def remove_weight_norm(self):
275
- for l in self.ups:
276
- remove_weight_norm(l)
277
- for l in self.resblocks:
278
- l.remove_weight_norm()
279
-
280
-
281
- class SineGen(torch.nn.Module):
282
- """Definition of sine generator
283
- SineGen(samp_rate, harmonic_num = 0,
284
- sine_amp = 0.1, noise_std = 0.003,
285
- voiced_threshold = 0,
286
- flag_for_pulse=False)
287
- samp_rate: sampling rate in Hz
288
- harmonic_num: number of harmonic overtones (default 0)
289
- sine_amp: amplitude of sine-wavefrom (default 0.1)
290
- noise_std: std of Gaussian noise (default 0.003)
291
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
- Note: when flag_for_pulse is True, the first time step of a voiced
294
- segment is always sin(np.pi) or cos(0)
295
- """
296
-
297
- def __init__(
298
- self,
299
- samp_rate,
300
- harmonic_num=0,
301
- sine_amp=0.1,
302
- noise_std=0.003,
303
- voiced_threshold=0,
304
- flag_for_pulse=False,
305
- ):
306
- super(SineGen, self).__init__()
307
- self.sine_amp = sine_amp
308
- self.noise_std = noise_std
309
- self.harmonic_num = harmonic_num
310
- self.dim = self.harmonic_num + 1
311
- self.sampling_rate = samp_rate
312
- self.voiced_threshold = voiced_threshold
313
-
314
- def _f02uv(self, f0):
315
- # generate uv signal
316
- uv = torch.ones_like(f0)
317
- uv = uv * (f0 > self.voiced_threshold)
318
- return uv
319
-
320
- def forward(self, f0, upp):
321
- """sine_tensor, uv = forward(f0)
322
- input F0: tensor(batchsize=1, length, dim=1)
323
- f0 for unvoiced steps should be 0
324
- output sine_tensor: tensor(batchsize=1, length, dim)
325
- output uv: tensor(batchsize=1, length, 1)
326
- """
327
- with torch.no_grad():
328
- f0 = f0[:, None].transpose(1, 2)
329
- f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
330
- # fundamental component
331
- f0_buf[:, :, 0] = f0[:, :, 0]
332
- for idx in np.arange(self.harmonic_num):
333
- f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
334
- idx + 2
335
- ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
336
- rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
337
- rand_ini = torch.rand(
338
- f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
339
- )
340
- rand_ini[:, 0] = 0
341
- rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
342
- tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
343
- tmp_over_one *= upp
344
- tmp_over_one = F.interpolate(
345
- tmp_over_one.transpose(2, 1),
346
- scale_factor=upp,
347
- mode="linear",
348
- align_corners=True,
349
- ).transpose(2, 1)
350
- rad_values = F.interpolate(
351
- rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
352
- ).transpose(
353
- 2, 1
354
- ) #######
355
- tmp_over_one %= 1
356
- tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
357
- cumsum_shift = torch.zeros_like(rad_values)
358
- cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
359
- sine_waves = torch.sin(
360
- torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
361
- )
362
- sine_waves = sine_waves * self.sine_amp
363
- uv = self._f02uv(f0)
364
- uv = F.interpolate(
365
- uv.transpose(2, 1), scale_factor=upp, mode="nearest"
366
- ).transpose(2, 1)
367
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
368
- noise = noise_amp * torch.randn_like(sine_waves)
369
- sine_waves = sine_waves * uv + noise
370
- return sine_waves, uv, noise
371
-
372
-
373
- class SourceModuleHnNSF(torch.nn.Module):
374
- """SourceModule for hn-nsf
375
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
376
- add_noise_std=0.003, voiced_threshod=0)
377
- sampling_rate: sampling_rate in Hz
378
- harmonic_num: number of harmonic above F0 (default: 0)
379
- sine_amp: amplitude of sine source signal (default: 0.1)
380
- add_noise_std: std of additive Gaussian noise (default: 0.003)
381
- note that amplitude of noise in unvoiced is decided
382
- by sine_amp
383
- voiced_threshold: threhold to set U/V given F0 (default: 0)
384
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
385
- F0_sampled (batchsize, length, 1)
386
- Sine_source (batchsize, length, 1)
387
- noise_source (batchsize, length 1)
388
- uv (batchsize, length, 1)
389
- """
390
-
391
- def __init__(
392
- self,
393
- sampling_rate,
394
- harmonic_num=0,
395
- sine_amp=0.1,
396
- add_noise_std=0.003,
397
- voiced_threshod=0,
398
- is_half=True,
399
- ):
400
- super(SourceModuleHnNSF, self).__init__()
401
-
402
- self.sine_amp = sine_amp
403
- self.noise_std = add_noise_std
404
- self.is_half = is_half
405
- # to produce sine waveforms
406
- self.l_sin_gen = SineGen(
407
- sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
408
- )
409
-
410
- # to merge source harmonics into a single excitation
411
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
412
- self.l_tanh = torch.nn.Tanh()
413
-
414
- def forward(self, x, upp=None):
415
- sine_wavs, uv, _ = self.l_sin_gen(x, upp)
416
- if self.is_half:
417
- sine_wavs = sine_wavs.half()
418
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
419
- return sine_merge, None, None # noise, uv
420
-
421
-
422
- class GeneratorNSF(torch.nn.Module):
423
- def __init__(
424
- self,
425
- initial_channel,
426
- resblock,
427
- resblock_kernel_sizes,
428
- resblock_dilation_sizes,
429
- upsample_rates,
430
- upsample_initial_channel,
431
- upsample_kernel_sizes,
432
- gin_channels,
433
- sr,
434
- is_half=False,
435
- ):
436
- super(GeneratorNSF, self).__init__()
437
- self.num_kernels = len(resblock_kernel_sizes)
438
- self.num_upsamples = len(upsample_rates)
439
-
440
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
441
- self.m_source = SourceModuleHnNSF(
442
- sampling_rate=sr, harmonic_num=0, is_half=is_half
443
- )
444
- self.noise_convs = nn.ModuleList()
445
- self.conv_pre = Conv1d(
446
- initial_channel, upsample_initial_channel, 7, 1, padding=3
447
- )
448
- resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
449
-
450
- self.ups = nn.ModuleList()
451
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
452
- c_cur = upsample_initial_channel // (2 ** (i + 1))
453
- self.ups.append(
454
- weight_norm(
455
- ConvTranspose1d(
456
- upsample_initial_channel // (2**i),
457
- upsample_initial_channel // (2 ** (i + 1)),
458
- k,
459
- u,
460
- padding=(k - u) // 2,
461
- )
462
- )
463
- )
464
- if i + 1 < len(upsample_rates):
465
- stride_f0 = np.prod(upsample_rates[i + 1 :])
466
- self.noise_convs.append(
467
- Conv1d(
468
- 1,
469
- c_cur,
470
- kernel_size=stride_f0 * 2,
471
- stride=stride_f0,
472
- padding=stride_f0 // 2,
473
- )
474
- )
475
- else:
476
- self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
477
-
478
- self.resblocks = nn.ModuleList()
479
- for i in range(len(self.ups)):
480
- ch = upsample_initial_channel // (2 ** (i + 1))
481
- for j, (k, d) in enumerate(
482
- zip(resblock_kernel_sizes, resblock_dilation_sizes)
483
- ):
484
- self.resblocks.append(resblock(ch, k, d))
485
-
486
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
487
- self.ups.apply(init_weights)
488
-
489
- if gin_channels != 0:
490
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
491
-
492
- self.upp = np.prod(upsample_rates)
493
-
494
- def forward(self, x, f0, g=None):
495
- har_source, noi_source, uv = self.m_source(f0, self.upp)
496
- har_source = har_source.transpose(1, 2)
497
- x = self.conv_pre(x)
498
- if g is not None:
499
- x = x + self.cond(g)
500
-
501
- for i in range(self.num_upsamples):
502
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
503
- x = self.ups[i](x)
504
- x_source = self.noise_convs[i](har_source)
505
- x = x + x_source
506
- xs = None
507
- for j in range(self.num_kernels):
508
- if xs is None:
509
- xs = self.resblocks[i * self.num_kernels + j](x)
510
- else:
511
- xs += self.resblocks[i * self.num_kernels + j](x)
512
- x = xs / self.num_kernels
513
- x = F.leaky_relu(x)
514
- x = self.conv_post(x)
515
- x = torch.tanh(x)
516
- return x
517
-
518
- def remove_weight_norm(self):
519
- for l in self.ups:
520
- remove_weight_norm(l)
521
- for l in self.resblocks:
522
- l.remove_weight_norm()
523
-
524
-
525
- sr2sr = {
526
- "32k": 32000,
527
- "40k": 40000,
528
- "48k": 48000,
529
- }
530
-
531
-
532
- class SynthesizerTrnMsNSFsidM(nn.Module):
533
- def __init__(
534
- self,
535
- spec_channels,
536
- segment_size,
537
- inter_channels,
538
- hidden_channels,
539
- filter_channels,
540
- n_heads,
541
- n_layers,
542
- kernel_size,
543
- p_dropout,
544
- resblock,
545
- resblock_kernel_sizes,
546
- resblock_dilation_sizes,
547
- upsample_rates,
548
- upsample_initial_channel,
549
- upsample_kernel_sizes,
550
- spk_embed_dim,
551
- gin_channels,
552
- sr,
553
- **kwargs
554
- ):
555
- super().__init__()
556
- if type(sr) == type("strr"):
557
- sr = sr2sr[sr]
558
- self.spec_channels = spec_channels
559
- self.inter_channels = inter_channels
560
- self.hidden_channels = hidden_channels
561
- self.filter_channels = filter_channels
562
- self.n_heads = n_heads
563
- self.n_layers = n_layers
564
- self.kernel_size = kernel_size
565
- self.p_dropout = p_dropout
566
- self.resblock = resblock
567
- self.resblock_kernel_sizes = resblock_kernel_sizes
568
- self.resblock_dilation_sizes = resblock_dilation_sizes
569
- self.upsample_rates = upsample_rates
570
- self.upsample_initial_channel = upsample_initial_channel
571
- self.upsample_kernel_sizes = upsample_kernel_sizes
572
- self.segment_size = segment_size
573
- self.gin_channels = gin_channels
574
- # self.hop_length = hop_length#
575
- self.spk_embed_dim = spk_embed_dim
576
- if self.gin_channels == 256:
577
- self.enc_p = TextEncoder256(
578
- inter_channels,
579
- hidden_channels,
580
- filter_channels,
581
- n_heads,
582
- n_layers,
583
- kernel_size,
584
- p_dropout,
585
- )
586
- else:
587
- self.enc_p = TextEncoder768(
588
- inter_channels,
589
- hidden_channels,
590
- filter_channels,
591
- n_heads,
592
- n_layers,
593
- kernel_size,
594
- p_dropout,
595
- )
596
- self.dec = GeneratorNSF(
597
- inter_channels,
598
- resblock,
599
- resblock_kernel_sizes,
600
- resblock_dilation_sizes,
601
- upsample_rates,
602
- upsample_initial_channel,
603
- upsample_kernel_sizes,
604
- gin_channels=gin_channels,
605
- sr=sr,
606
- is_half=kwargs["is_half"],
607
- )
608
- self.enc_q = PosteriorEncoder(
609
- spec_channels,
610
- inter_channels,
611
- hidden_channels,
612
- 5,
613
- 1,
614
- 16,
615
- gin_channels=gin_channels,
616
- )
617
- self.flow = ResidualCouplingBlock(
618
- inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
619
- )
620
- self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
621
- self.speaker_map = None
622
- print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
623
-
624
- def remove_weight_norm(self):
625
- self.dec.remove_weight_norm()
626
- self.flow.remove_weight_norm()
627
- self.enc_q.remove_weight_norm()
628
-
629
- def construct_spkmixmap(self, n_speaker):
630
- self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
631
- for i in range(n_speaker):
632
- self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
633
- self.speaker_map = self.speaker_map.unsqueeze(0)
634
-
635
- def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
636
- if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
637
- g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
638
- g = g * self.speaker_map # [N, S, B, 1, H]
639
- g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
640
- g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
641
- else:
642
- g = g.unsqueeze(0)
643
- g = self.emb_g(g).transpose(1, 2)
644
-
645
- m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
646
- z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
647
- z = self.flow(z_p, x_mask, g=g, reverse=True)
648
- o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
649
- return o
650
-
651
-
652
- class MultiPeriodDiscriminator(torch.nn.Module):
653
- def __init__(self, use_spectral_norm=False):
654
- super(MultiPeriodDiscriminator, self).__init__()
655
- periods = [2, 3, 5, 7, 11, 17]
656
- # periods = [3, 5, 7, 11, 17, 23, 37]
657
-
658
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
659
- discs = discs + [
660
- DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
661
- ]
662
- self.discriminators = nn.ModuleList(discs)
663
-
664
- def forward(self, y, y_hat):
665
- y_d_rs = [] #
666
- y_d_gs = []
667
- fmap_rs = []
668
- fmap_gs = []
669
- for i, d in enumerate(self.discriminators):
670
- y_d_r, fmap_r = d(y)
671
- y_d_g, fmap_g = d(y_hat)
672
- # for j in range(len(fmap_r)):
673
- # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
674
- y_d_rs.append(y_d_r)
675
- y_d_gs.append(y_d_g)
676
- fmap_rs.append(fmap_r)
677
- fmap_gs.append(fmap_g)
678
-
679
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
680
-
681
-
682
- class MultiPeriodDiscriminatorV2(torch.nn.Module):
683
- def __init__(self, use_spectral_norm=False):
684
- super(MultiPeriodDiscriminatorV2, self).__init__()
685
- # periods = [2, 3, 5, 7, 11, 17]
686
- periods = [2, 3, 5, 7, 11, 17, 23, 37]
687
-
688
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
689
- discs = discs + [
690
- DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
691
- ]
692
- self.discriminators = nn.ModuleList(discs)
693
-
694
- def forward(self, y, y_hat):
695
- y_d_rs = [] #
696
- y_d_gs = []
697
- fmap_rs = []
698
- fmap_gs = []
699
- for i, d in enumerate(self.discriminators):
700
- y_d_r, fmap_r = d(y)
701
- y_d_g, fmap_g = d(y_hat)
702
- # for j in range(len(fmap_r)):
703
- # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
704
- y_d_rs.append(y_d_r)
705
- y_d_gs.append(y_d_g)
706
- fmap_rs.append(fmap_r)
707
- fmap_gs.append(fmap_g)
708
-
709
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
710
-
711
-
712
- class DiscriminatorS(torch.nn.Module):
713
- def __init__(self, use_spectral_norm=False):
714
- super(DiscriminatorS, self).__init__()
715
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
716
- self.convs = nn.ModuleList(
717
- [
718
- norm_f(Conv1d(1, 16, 15, 1, padding=7)),
719
- norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
720
- norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
721
- norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
722
- norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
723
- norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
724
- ]
725
- )
726
- self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
727
-
728
- def forward(self, x):
729
- fmap = []
730
-
731
- for l in self.convs:
732
- x = l(x)
733
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
734
- fmap.append(x)
735
- x = self.conv_post(x)
736
- fmap.append(x)
737
- x = torch.flatten(x, 1, -1)
738
-
739
- return x, fmap
740
-
741
-
742
- class DiscriminatorP(torch.nn.Module):
743
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
744
- super(DiscriminatorP, self).__init__()
745
- self.period = period
746
- self.use_spectral_norm = use_spectral_norm
747
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
748
- self.convs = nn.ModuleList(
749
- [
750
- norm_f(
751
- Conv2d(
752
- 1,
753
- 32,
754
- (kernel_size, 1),
755
- (stride, 1),
756
- padding=(get_padding(kernel_size, 1), 0),
757
- )
758
- ),
759
- norm_f(
760
- Conv2d(
761
- 32,
762
- 128,
763
- (kernel_size, 1),
764
- (stride, 1),
765
- padding=(get_padding(kernel_size, 1), 0),
766
- )
767
- ),
768
- norm_f(
769
- Conv2d(
770
- 128,
771
- 512,
772
- (kernel_size, 1),
773
- (stride, 1),
774
- padding=(get_padding(kernel_size, 1), 0),
775
- )
776
- ),
777
- norm_f(
778
- Conv2d(
779
- 512,
780
- 1024,
781
- (kernel_size, 1),
782
- (stride, 1),
783
- padding=(get_padding(kernel_size, 1), 0),
784
- )
785
- ),
786
- norm_f(
787
- Conv2d(
788
- 1024,
789
- 1024,
790
- (kernel_size, 1),
791
- 1,
792
- padding=(get_padding(kernel_size, 1), 0),
793
- )
794
- ),
795
- ]
796
- )
797
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
798
-
799
- def forward(self, x):
800
- fmap = []
801
-
802
- # 1d to 2d
803
- b, c, t = x.shape
804
- if t % self.period != 0: # pad first
805
- n_pad = self.period - (t % self.period)
806
- x = F.pad(x, (0, n_pad), "reflect")
807
- t = t + n_pad
808
- x = x.view(b, c, t // self.period, self.period)
809
-
810
- for l in self.convs:
811
- x = l(x)
812
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
813
- fmap.append(x)
814
- x = self.conv_post(x)
815
- fmap.append(x)
816
- x = torch.flatten(x, 1, -1)
817
-
818
- return x, fmap
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/infer_pack/models_onnx_moess.py DELETED
@@ -1,849 +0,0 @@
1
- import math, pdb, os
2
- from time import time as ttime
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
- from infer_pack import modules
7
- from infer_pack import attentions
8
- from infer_pack import commons
9
- from infer_pack.commons import init_weights, get_padding
10
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
- from infer_pack.commons import init_weights
13
- import numpy as np
14
- from infer_pack import commons
15
-
16
-
17
- class TextEncoder256(nn.Module):
18
- def __init__(
19
- self,
20
- out_channels,
21
- hidden_channels,
22
- filter_channels,
23
- n_heads,
24
- n_layers,
25
- kernel_size,
26
- p_dropout,
27
- f0=True,
28
- ):
29
- super().__init__()
30
- self.out_channels = out_channels
31
- self.hidden_channels = hidden_channels
32
- self.filter_channels = filter_channels
33
- self.n_heads = n_heads
34
- self.n_layers = n_layers
35
- self.kernel_size = kernel_size
36
- self.p_dropout = p_dropout
37
- self.emb_phone = nn.Linear(256, hidden_channels)
38
- self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
- if f0 == True:
40
- self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
- self.encoder = attentions.Encoder(
42
- hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
- )
44
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
-
46
- def forward(self, phone, pitch, lengths):
47
- if pitch == None:
48
- x = self.emb_phone(phone)
49
- else:
50
- x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
- x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
- x = self.lrelu(x)
53
- x = torch.transpose(x, 1, -1) # [b, h, t]
54
- x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
- x.dtype
56
- )
57
- x = self.encoder(x * x_mask, x_mask)
58
- stats = self.proj(x) * x_mask
59
-
60
- m, logs = torch.split(stats, self.out_channels, dim=1)
61
- return m, logs, x_mask
62
-
63
-
64
- class TextEncoder256Sim(nn.Module):
65
- def __init__(
66
- self,
67
- out_channels,
68
- hidden_channels,
69
- filter_channels,
70
- n_heads,
71
- n_layers,
72
- kernel_size,
73
- p_dropout,
74
- f0=True,
75
- ):
76
- super().__init__()
77
- self.out_channels = out_channels
78
- self.hidden_channels = hidden_channels
79
- self.filter_channels = filter_channels
80
- self.n_heads = n_heads
81
- self.n_layers = n_layers
82
- self.kernel_size = kernel_size
83
- self.p_dropout = p_dropout
84
- self.emb_phone = nn.Linear(256, hidden_channels)
85
- self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
- if f0 == True:
87
- self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
- self.encoder = attentions.Encoder(
89
- hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
- )
91
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
92
-
93
- def forward(self, phone, pitch, lengths):
94
- if pitch == None:
95
- x = self.emb_phone(phone)
96
- else:
97
- x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
- x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
- x = self.lrelu(x)
100
- x = torch.transpose(x, 1, -1) # [b, h, t]
101
- x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
- x.dtype
103
- )
104
- x = self.encoder(x * x_mask, x_mask)
105
- x = self.proj(x) * x_mask
106
- return x, x_mask
107
-
108
-
109
- class ResidualCouplingBlock(nn.Module):
110
- def __init__(
111
- self,
112
- channels,
113
- hidden_channels,
114
- kernel_size,
115
- dilation_rate,
116
- n_layers,
117
- n_flows=4,
118
- gin_channels=0,
119
- ):
120
- super().__init__()
121
- self.channels = channels
122
- self.hidden_channels = hidden_channels
123
- self.kernel_size = kernel_size
124
- self.dilation_rate = dilation_rate
125
- self.n_layers = n_layers
126
- self.n_flows = n_flows
127
- self.gin_channels = gin_channels
128
-
129
- self.flows = nn.ModuleList()
130
- for i in range(n_flows):
131
- self.flows.append(
132
- modules.ResidualCouplingLayer(
133
- channels,
134
- hidden_channels,
135
- kernel_size,
136
- dilation_rate,
137
- n_layers,
138
- gin_channels=gin_channels,
139
- mean_only=True,
140
- )
141
- )
142
- self.flows.append(modules.Flip())
143
-
144
- def forward(self, x, x_mask, g=None, reverse=False):
145
- if not reverse:
146
- for flow in self.flows:
147
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
148
- else:
149
- for flow in reversed(self.flows):
150
- x = flow(x, x_mask, g=g, reverse=reverse)
151
- return x
152
-
153
- def remove_weight_norm(self):
154
- for i in range(self.n_flows):
155
- self.flows[i * 2].remove_weight_norm()
156
-
157
-
158
- class PosteriorEncoder(nn.Module):
159
- def __init__(
160
- self,
161
- in_channels,
162
- out_channels,
163
- hidden_channels,
164
- kernel_size,
165
- dilation_rate,
166
- n_layers,
167
- gin_channels=0,
168
- ):
169
- super().__init__()
170
- self.in_channels = in_channels
171
- self.out_channels = out_channels
172
- self.hidden_channels = hidden_channels
173
- self.kernel_size = kernel_size
174
- self.dilation_rate = dilation_rate
175
- self.n_layers = n_layers
176
- self.gin_channels = gin_channels
177
-
178
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
179
- self.enc = modules.WN(
180
- hidden_channels,
181
- kernel_size,
182
- dilation_rate,
183
- n_layers,
184
- gin_channels=gin_channels,
185
- )
186
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
187
-
188
- def forward(self, x, x_lengths, g=None):
189
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
190
- x.dtype
191
- )
192
- x = self.pre(x) * x_mask
193
- x = self.enc(x, x_mask, g=g)
194
- stats = self.proj(x) * x_mask
195
- m, logs = torch.split(stats, self.out_channels, dim=1)
196
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
197
- return z, m, logs, x_mask
198
-
199
- def remove_weight_norm(self):
200
- self.enc.remove_weight_norm()
201
-
202
-
203
- class Generator(torch.nn.Module):
204
- def __init__(
205
- self,
206
- initial_channel,
207
- resblock,
208
- resblock_kernel_sizes,
209
- resblock_dilation_sizes,
210
- upsample_rates,
211
- upsample_initial_channel,
212
- upsample_kernel_sizes,
213
- gin_channels=0,
214
- ):
215
- super(Generator, self).__init__()
216
- self.num_kernels = len(resblock_kernel_sizes)
217
- self.num_upsamples = len(upsample_rates)
218
- self.conv_pre = Conv1d(
219
- initial_channel, upsample_initial_channel, 7, 1, padding=3
220
- )
221
- resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
222
-
223
- self.ups = nn.ModuleList()
224
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
225
- self.ups.append(
226
- weight_norm(
227
- ConvTranspose1d(
228
- upsample_initial_channel // (2**i),
229
- upsample_initial_channel // (2 ** (i + 1)),
230
- k,
231
- u,
232
- padding=(k - u) // 2,
233
- )
234
- )
235
- )
236
-
237
- self.resblocks = nn.ModuleList()
238
- for i in range(len(self.ups)):
239
- ch = upsample_initial_channel // (2 ** (i + 1))
240
- for j, (k, d) in enumerate(
241
- zip(resblock_kernel_sizes, resblock_dilation_sizes)
242
- ):
243
- self.resblocks.append(resblock(ch, k, d))
244
-
245
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
246
- self.ups.apply(init_weights)
247
-
248
- if gin_channels != 0:
249
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
250
-
251
- def forward(self, x, g=None):
252
- x = self.conv_pre(x)
253
- if g is not None:
254
- x = x + self.cond(g)
255
-
256
- for i in range(self.num_upsamples):
257
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
258
- x = self.ups[i](x)
259
- xs = None
260
- for j in range(self.num_kernels):
261
- if xs is None:
262
- xs = self.resblocks[i * self.num_kernels + j](x)
263
- else:
264
- xs += self.resblocks[i * self.num_kernels + j](x)
265
- x = xs / self.num_kernels
266
- x = F.leaky_relu(x)
267
- x = self.conv_post(x)
268
- x = torch.tanh(x)
269
-
270
- return x
271
-
272
- def remove_weight_norm(self):
273
- for l in self.ups:
274
- remove_weight_norm(l)
275
- for l in self.resblocks:
276
- l.remove_weight_norm()
277
-
278
-
279
- class SineGen(torch.nn.Module):
280
- """Definition of sine generator
281
- SineGen(samp_rate, harmonic_num = 0,
282
- sine_amp = 0.1, noise_std = 0.003,
283
- voiced_threshold = 0,
284
- flag_for_pulse=False)
285
- samp_rate: sampling rate in Hz
286
- harmonic_num: number of harmonic overtones (default 0)
287
- sine_amp: amplitude of sine-wavefrom (default 0.1)
288
- noise_std: std of Gaussian noise (default 0.003)
289
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
290
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
291
- Note: when flag_for_pulse is True, the first time step of a voiced
292
- segment is always sin(np.pi) or cos(0)
293
- """
294
-
295
- def __init__(
296
- self,
297
- samp_rate,
298
- harmonic_num=0,
299
- sine_amp=0.1,
300
- noise_std=0.003,
301
- voiced_threshold=0,
302
- flag_for_pulse=False,
303
- ):
304
- super(SineGen, self).__init__()
305
- self.sine_amp = sine_amp
306
- self.noise_std = noise_std
307
- self.harmonic_num = harmonic_num
308
- self.dim = self.harmonic_num + 1
309
- self.sampling_rate = samp_rate
310
- self.voiced_threshold = voiced_threshold
311
-
312
- def _f02uv(self, f0):
313
- # generate uv signal
314
- uv = torch.ones_like(f0)
315
- uv = uv * (f0 > self.voiced_threshold)
316
- return uv
317
-
318
- def forward(self, f0, upp):
319
- """sine_tensor, uv = forward(f0)
320
- input F0: tensor(batchsize=1, length, dim=1)
321
- f0 for unvoiced steps should be 0
322
- output sine_tensor: tensor(batchsize=1, length, dim)
323
- output uv: tensor(batchsize=1, length, 1)
324
- """
325
- with torch.no_grad():
326
- f0 = f0[:, None].transpose(1, 2)
327
- f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
328
- # fundamental component
329
- f0_buf[:, :, 0] = f0[:, :, 0]
330
- for idx in np.arange(self.harmonic_num):
331
- f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
332
- idx + 2
333
- ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
334
- rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
335
- rand_ini = torch.rand(
336
- f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
337
- )
338
- rand_ini[:, 0] = 0
339
- rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
340
- tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
341
- tmp_over_one *= upp
342
- tmp_over_one = F.interpolate(
343
- tmp_over_one.transpose(2, 1),
344
- scale_factor=upp,
345
- mode="linear",
346
- align_corners=True,
347
- ).transpose(2, 1)
348
- rad_values = F.interpolate(
349
- rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
350
- ).transpose(
351
- 2, 1
352
- ) #######
353
- tmp_over_one %= 1
354
- tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
355
- cumsum_shift = torch.zeros_like(rad_values)
356
- cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
357
- sine_waves = torch.sin(
358
- torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
359
- )
360
- sine_waves = sine_waves * self.sine_amp
361
- uv = self._f02uv(f0)
362
- uv = F.interpolate(
363
- uv.transpose(2, 1), scale_factor=upp, mode="nearest"
364
- ).transpose(2, 1)
365
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
366
- noise = noise_amp * torch.randn_like(sine_waves)
367
- sine_waves = sine_waves * uv + noise
368
- return sine_waves, uv, noise
369
-
370
-
371
- class SourceModuleHnNSF(torch.nn.Module):
372
- """SourceModule for hn-nsf
373
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
374
- add_noise_std=0.003, voiced_threshod=0)
375
- sampling_rate: sampling_rate in Hz
376
- harmonic_num: number of harmonic above F0 (default: 0)
377
- sine_amp: amplitude of sine source signal (default: 0.1)
378
- add_noise_std: std of additive Gaussian noise (default: 0.003)
379
- note that amplitude of noise in unvoiced is decided
380
- by sine_amp
381
- voiced_threshold: threhold to set U/V given F0 (default: 0)
382
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
383
- F0_sampled (batchsize, length, 1)
384
- Sine_source (batchsize, length, 1)
385
- noise_source (batchsize, length 1)
386
- uv (batchsize, length, 1)
387
- """
388
-
389
- def __init__(
390
- self,
391
- sampling_rate,
392
- harmonic_num=0,
393
- sine_amp=0.1,
394
- add_noise_std=0.003,
395
- voiced_threshod=0,
396
- is_half=True,
397
- ):
398
- super(SourceModuleHnNSF, self).__init__()
399
-
400
- self.sine_amp = sine_amp
401
- self.noise_std = add_noise_std
402
- self.is_half = is_half
403
- # to produce sine waveforms
404
- self.l_sin_gen = SineGen(
405
- sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
406
- )
407
-
408
- # to merge source harmonics into a single excitation
409
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
410
- self.l_tanh = torch.nn.Tanh()
411
-
412
- def forward(self, x, upp=None):
413
- sine_wavs, uv, _ = self.l_sin_gen(x, upp)
414
- if self.is_half:
415
- sine_wavs = sine_wavs.half()
416
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
417
- return sine_merge, None, None # noise, uv
418
-
419
-
420
- class GeneratorNSF(torch.nn.Module):
421
- def __init__(
422
- self,
423
- initial_channel,
424
- resblock,
425
- resblock_kernel_sizes,
426
- resblock_dilation_sizes,
427
- upsample_rates,
428
- upsample_initial_channel,
429
- upsample_kernel_sizes,
430
- gin_channels,
431
- sr,
432
- is_half=False,
433
- ):
434
- super(GeneratorNSF, self).__init__()
435
- self.num_kernels = len(resblock_kernel_sizes)
436
- self.num_upsamples = len(upsample_rates)
437
-
438
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
439
- self.m_source = SourceModuleHnNSF(
440
- sampling_rate=sr, harmonic_num=0, is_half=is_half
441
- )
442
- self.noise_convs = nn.ModuleList()
443
- self.conv_pre = Conv1d(
444
- initial_channel, upsample_initial_channel, 7, 1, padding=3
445
- )
446
- resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
447
-
448
- self.ups = nn.ModuleList()
449
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
450
- c_cur = upsample_initial_channel // (2 ** (i + 1))
451
- self.ups.append(
452
- weight_norm(
453
- ConvTranspose1d(
454
- upsample_initial_channel // (2**i),
455
- upsample_initial_channel // (2 ** (i + 1)),
456
- k,
457
- u,
458
- padding=(k - u) // 2,
459
- )
460
- )
461
- )
462
- if i + 1 < len(upsample_rates):
463
- stride_f0 = np.prod(upsample_rates[i + 1 :])
464
- self.noise_convs.append(
465
- Conv1d(
466
- 1,
467
- c_cur,
468
- kernel_size=stride_f0 * 2,
469
- stride=stride_f0,
470
- padding=stride_f0 // 2,
471
- )
472
- )
473
- else:
474
- self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
475
-
476
- self.resblocks = nn.ModuleList()
477
- for i in range(len(self.ups)):
478
- ch = upsample_initial_channel // (2 ** (i + 1))
479
- for j, (k, d) in enumerate(
480
- zip(resblock_kernel_sizes, resblock_dilation_sizes)
481
- ):
482
- self.resblocks.append(resblock(ch, k, d))
483
-
484
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
485
- self.ups.apply(init_weights)
486
-
487
- if gin_channels != 0:
488
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
489
-
490
- self.upp = np.prod(upsample_rates)
491
-
492
- def forward(self, x, f0, g=None):
493
- har_source, noi_source, uv = self.m_source(f0, self.upp)
494
- har_source = har_source.transpose(1, 2)
495
- x = self.conv_pre(x)
496
- if g is not None:
497
- x = x + self.cond(g)
498
-
499
- for i in range(self.num_upsamples):
500
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
501
- x = self.ups[i](x)
502
- x_source = self.noise_convs[i](har_source)
503
- x = x + x_source
504
- xs = None
505
- for j in range(self.num_kernels):
506
- if xs is None:
507
- xs = self.resblocks[i * self.num_kernels + j](x)
508
- else:
509
- xs += self.resblocks[i * self.num_kernels + j](x)
510
- x = xs / self.num_kernels
511
- x = F.leaky_relu(x)
512
- x = self.conv_post(x)
513
- x = torch.tanh(x)
514
- return x
515
-
516
- def remove_weight_norm(self):
517
- for l in self.ups:
518
- remove_weight_norm(l)
519
- for l in self.resblocks:
520
- l.remove_weight_norm()
521
-
522
-
523
- sr2sr = {
524
- "32k": 32000,
525
- "40k": 40000,
526
- "48k": 48000,
527
- }
528
-
529
-
530
- class SynthesizerTrnMs256NSFsidM(nn.Module):
531
- def __init__(
532
- self,
533
- spec_channels,
534
- segment_size,
535
- inter_channels,
536
- hidden_channels,
537
- filter_channels,
538
- n_heads,
539
- n_layers,
540
- kernel_size,
541
- p_dropout,
542
- resblock,
543
- resblock_kernel_sizes,
544
- resblock_dilation_sizes,
545
- upsample_rates,
546
- upsample_initial_channel,
547
- upsample_kernel_sizes,
548
- spk_embed_dim,
549
- gin_channels,
550
- sr,
551
- **kwargs
552
- ):
553
- super().__init__()
554
- if type(sr) == type("strr"):
555
- sr = sr2sr[sr]
556
- self.spec_channels = spec_channels
557
- self.inter_channels = inter_channels
558
- self.hidden_channels = hidden_channels
559
- self.filter_channels = filter_channels
560
- self.n_heads = n_heads
561
- self.n_layers = n_layers
562
- self.kernel_size = kernel_size
563
- self.p_dropout = p_dropout
564
- self.resblock = resblock
565
- self.resblock_kernel_sizes = resblock_kernel_sizes
566
- self.resblock_dilation_sizes = resblock_dilation_sizes
567
- self.upsample_rates = upsample_rates
568
- self.upsample_initial_channel = upsample_initial_channel
569
- self.upsample_kernel_sizes = upsample_kernel_sizes
570
- self.segment_size = segment_size
571
- self.gin_channels = gin_channels
572
- # self.hop_length = hop_length#
573
- self.spk_embed_dim = spk_embed_dim
574
- self.enc_p = TextEncoder256(
575
- inter_channels,
576
- hidden_channels,
577
- filter_channels,
578
- n_heads,
579
- n_layers,
580
- kernel_size,
581
- p_dropout,
582
- )
583
- self.dec = GeneratorNSF(
584
- inter_channels,
585
- resblock,
586
- resblock_kernel_sizes,
587
- resblock_dilation_sizes,
588
- upsample_rates,
589
- upsample_initial_channel,
590
- upsample_kernel_sizes,
591
- gin_channels=gin_channels,
592
- sr=sr,
593
- is_half=kwargs["is_half"],
594
- )
595
- self.enc_q = PosteriorEncoder(
596
- spec_channels,
597
- inter_channels,
598
- hidden_channels,
599
- 5,
600
- 1,
601
- 16,
602
- gin_channels=gin_channels,
603
- )
604
- self.flow = ResidualCouplingBlock(
605
- inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
606
- )
607
- self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
608
- print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
609
-
610
- def remove_weight_norm(self):
611
- self.dec.remove_weight_norm()
612
- self.flow.remove_weight_norm()
613
- self.enc_q.remove_weight_norm()
614
-
615
- def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None):
616
- g = self.emb_g(sid).unsqueeze(-1)
617
- m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
618
- z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
619
- z = self.flow(z_p, x_mask, g=g, reverse=True)
620
- o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
621
- return o
622
-
623
-
624
- class SynthesizerTrnMs256NSFsid_sim(nn.Module):
625
- """
626
- Synthesizer for Training
627
- """
628
-
629
- def __init__(
630
- self,
631
- spec_channels,
632
- segment_size,
633
- inter_channels,
634
- hidden_channels,
635
- filter_channels,
636
- n_heads,
637
- n_layers,
638
- kernel_size,
639
- p_dropout,
640
- resblock,
641
- resblock_kernel_sizes,
642
- resblock_dilation_sizes,
643
- upsample_rates,
644
- upsample_initial_channel,
645
- upsample_kernel_sizes,
646
- spk_embed_dim,
647
- # hop_length,
648
- gin_channels=0,
649
- use_sdp=True,
650
- **kwargs
651
- ):
652
- super().__init__()
653
- self.spec_channels = spec_channels
654
- self.inter_channels = inter_channels
655
- self.hidden_channels = hidden_channels
656
- self.filter_channels = filter_channels
657
- self.n_heads = n_heads
658
- self.n_layers = n_layers
659
- self.kernel_size = kernel_size
660
- self.p_dropout = p_dropout
661
- self.resblock = resblock
662
- self.resblock_kernel_sizes = resblock_kernel_sizes
663
- self.resblock_dilation_sizes = resblock_dilation_sizes
664
- self.upsample_rates = upsample_rates
665
- self.upsample_initial_channel = upsample_initial_channel
666
- self.upsample_kernel_sizes = upsample_kernel_sizes
667
- self.segment_size = segment_size
668
- self.gin_channels = gin_channels
669
- # self.hop_length = hop_length#
670
- self.spk_embed_dim = spk_embed_dim
671
- self.enc_p = TextEncoder256Sim(
672
- inter_channels,
673
- hidden_channels,
674
- filter_channels,
675
- n_heads,
676
- n_layers,
677
- kernel_size,
678
- p_dropout,
679
- )
680
- self.dec = GeneratorNSF(
681
- inter_channels,
682
- resblock,
683
- resblock_kernel_sizes,
684
- resblock_dilation_sizes,
685
- upsample_rates,
686
- upsample_initial_channel,
687
- upsample_kernel_sizes,
688
- gin_channels=gin_channels,
689
- is_half=kwargs["is_half"],
690
- )
691
-
692
- self.flow = ResidualCouplingBlock(
693
- inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
694
- )
695
- self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
696
- print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
697
-
698
- def remove_weight_norm(self):
699
- self.dec.remove_weight_norm()
700
- self.flow.remove_weight_norm()
701
- self.enc_q.remove_weight_norm()
702
-
703
- def forward(
704
- self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
705
- ): # y是spec不需要了现在
706
- g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
707
- x, x_mask = self.enc_p(phone, pitch, phone_lengths)
708
- x = self.flow(x, x_mask, g=g, reverse=True)
709
- o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
710
- return o
711
-
712
-
713
- class MultiPeriodDiscriminator(torch.nn.Module):
714
- def __init__(self, use_spectral_norm=False):
715
- super(MultiPeriodDiscriminator, self).__init__()
716
- periods = [2, 3, 5, 7, 11, 17]
717
- # periods = [3, 5, 7, 11, 17, 23, 37]
718
-
719
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
720
- discs = discs + [
721
- DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
722
- ]
723
- self.discriminators = nn.ModuleList(discs)
724
-
725
- def forward(self, y, y_hat):
726
- y_d_rs = [] #
727
- y_d_gs = []
728
- fmap_rs = []
729
- fmap_gs = []
730
- for i, d in enumerate(self.discriminators):
731
- y_d_r, fmap_r = d(y)
732
- y_d_g, fmap_g = d(y_hat)
733
- # for j in range(len(fmap_r)):
734
- # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
735
- y_d_rs.append(y_d_r)
736
- y_d_gs.append(y_d_g)
737
- fmap_rs.append(fmap_r)
738
- fmap_gs.append(fmap_g)
739
-
740
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
741
-
742
-
743
- class DiscriminatorS(torch.nn.Module):
744
- def __init__(self, use_spectral_norm=False):
745
- super(DiscriminatorS, self).__init__()
746
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
747
- self.convs = nn.ModuleList(
748
- [
749
- norm_f(Conv1d(1, 16, 15, 1, padding=7)),
750
- norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
751
- norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
752
- norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
753
- norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
754
- norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
755
- ]
756
- )
757
- self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
758
-
759
- def forward(self, x):
760
- fmap = []
761
-
762
- for l in self.convs:
763
- x = l(x)
764
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
765
- fmap.append(x)
766
- x = self.conv_post(x)
767
- fmap.append(x)
768
- x = torch.flatten(x, 1, -1)
769
-
770
- return x, fmap
771
-
772
-
773
- class DiscriminatorP(torch.nn.Module):
774
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
775
- super(DiscriminatorP, self).__init__()
776
- self.period = period
777
- self.use_spectral_norm = use_spectral_norm
778
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
779
- self.convs = nn.ModuleList(
780
- [
781
- norm_f(
782
- Conv2d(
783
- 1,
784
- 32,
785
- (kernel_size, 1),
786
- (stride, 1),
787
- padding=(get_padding(kernel_size, 1), 0),
788
- )
789
- ),
790
- norm_f(
791
- Conv2d(
792
- 32,
793
- 128,
794
- (kernel_size, 1),
795
- (stride, 1),
796
- padding=(get_padding(kernel_size, 1), 0),
797
- )
798
- ),
799
- norm_f(
800
- Conv2d(
801
- 128,
802
- 512,
803
- (kernel_size, 1),
804
- (stride, 1),
805
- padding=(get_padding(kernel_size, 1), 0),
806
- )
807
- ),
808
- norm_f(
809
- Conv2d(
810
- 512,
811
- 1024,
812
- (kernel_size, 1),
813
- (stride, 1),
814
- padding=(get_padding(kernel_size, 1), 0),
815
- )
816
- ),
817
- norm_f(
818
- Conv2d(
819
- 1024,
820
- 1024,
821
- (kernel_size, 1),
822
- 1,
823
- padding=(get_padding(kernel_size, 1), 0),
824
- )
825
- ),
826
- ]
827
- )
828
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
829
-
830
- def forward(self, x):
831
- fmap = []
832
-
833
- # 1d to 2d
834
- b, c, t = x.shape
835
- if t % self.period != 0: # pad first
836
- n_pad = self.period - (t % self.period)
837
- x = F.pad(x, (0, n_pad), "reflect")
838
- t = t + n_pad
839
- x = x.view(b, c, t // self.period, self.period)
840
-
841
- for l in self.convs:
842
- x = l(x)
843
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
844
- fmap.append(x)
845
- x = self.conv_post(x)
846
- fmap.append(x)
847
- x = torch.flatten(x, 1, -1)
848
-
849
- return x, fmap
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/infer_pack/modules.py DELETED
@@ -1,522 +0,0 @@
1
- import copy
2
- import math
3
- import numpy as np
4
- import scipy
5
- import torch
6
- from torch import nn
7
- from torch.nn import functional as F
8
-
9
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
- from torch.nn.utils import weight_norm, remove_weight_norm
11
-
12
- from infer_pack import commons
13
- from infer_pack.commons import init_weights, get_padding
14
- from infer_pack.transforms import piecewise_rational_quadratic_transform
15
-
16
-
17
- LRELU_SLOPE = 0.1
18
-
19
-
20
- class LayerNorm(nn.Module):
21
- def __init__(self, channels, eps=1e-5):
22
- super().__init__()
23
- self.channels = channels
24
- self.eps = eps
25
-
26
- self.gamma = nn.Parameter(torch.ones(channels))
27
- self.beta = nn.Parameter(torch.zeros(channels))
28
-
29
- def forward(self, x):
30
- x = x.transpose(1, -1)
31
- x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
- return x.transpose(1, -1)
33
-
34
-
35
- class ConvReluNorm(nn.Module):
36
- def __init__(
37
- self,
38
- in_channels,
39
- hidden_channels,
40
- out_channels,
41
- kernel_size,
42
- n_layers,
43
- p_dropout,
44
- ):
45
- super().__init__()
46
- self.in_channels = in_channels
47
- self.hidden_channels = hidden_channels
48
- self.out_channels = out_channels
49
- self.kernel_size = kernel_size
50
- self.n_layers = n_layers
51
- self.p_dropout = p_dropout
52
- assert n_layers > 1, "Number of layers should be larger than 0."
53
-
54
- self.conv_layers = nn.ModuleList()
55
- self.norm_layers = nn.ModuleList()
56
- self.conv_layers.append(
57
- nn.Conv1d(
58
- in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
59
- )
60
- )
61
- self.norm_layers.append(LayerNorm(hidden_channels))
62
- self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
63
- for _ in range(n_layers - 1):
64
- self.conv_layers.append(
65
- nn.Conv1d(
66
- hidden_channels,
67
- hidden_channels,
68
- kernel_size,
69
- padding=kernel_size // 2,
70
- )
71
- )
72
- self.norm_layers.append(LayerNorm(hidden_channels))
73
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
74
- self.proj.weight.data.zero_()
75
- self.proj.bias.data.zero_()
76
-
77
- def forward(self, x, x_mask):
78
- x_org = x
79
- for i in range(self.n_layers):
80
- x = self.conv_layers[i](x * x_mask)
81
- x = self.norm_layers[i](x)
82
- x = self.relu_drop(x)
83
- x = x_org + self.proj(x)
84
- return x * x_mask
85
-
86
-
87
- class DDSConv(nn.Module):
88
- """
89
- Dialted and Depth-Separable Convolution
90
- """
91
-
92
- def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
93
- super().__init__()
94
- self.channels = channels
95
- self.kernel_size = kernel_size
96
- self.n_layers = n_layers
97
- self.p_dropout = p_dropout
98
-
99
- self.drop = nn.Dropout(p_dropout)
100
- self.convs_sep = nn.ModuleList()
101
- self.convs_1x1 = nn.ModuleList()
102
- self.norms_1 = nn.ModuleList()
103
- self.norms_2 = nn.ModuleList()
104
- for i in range(n_layers):
105
- dilation = kernel_size**i
106
- padding = (kernel_size * dilation - dilation) // 2
107
- self.convs_sep.append(
108
- nn.Conv1d(
109
- channels,
110
- channels,
111
- kernel_size,
112
- groups=channels,
113
- dilation=dilation,
114
- padding=padding,
115
- )
116
- )
117
- self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
118
- self.norms_1.append(LayerNorm(channels))
119
- self.norms_2.append(LayerNorm(channels))
120
-
121
- def forward(self, x, x_mask, g=None):
122
- if g is not None:
123
- x = x + g
124
- for i in range(self.n_layers):
125
- y = self.convs_sep[i](x * x_mask)
126
- y = self.norms_1[i](y)
127
- y = F.gelu(y)
128
- y = self.convs_1x1[i](y)
129
- y = self.norms_2[i](y)
130
- y = F.gelu(y)
131
- y = self.drop(y)
132
- x = x + y
133
- return x * x_mask
134
-
135
-
136
- class WN(torch.nn.Module):
137
- def __init__(
138
- self,
139
- hidden_channels,
140
- kernel_size,
141
- dilation_rate,
142
- n_layers,
143
- gin_channels=0,
144
- p_dropout=0,
145
- ):
146
- super(WN, self).__init__()
147
- assert kernel_size % 2 == 1
148
- self.hidden_channels = hidden_channels
149
- self.kernel_size = (kernel_size,)
150
- self.dilation_rate = dilation_rate
151
- self.n_layers = n_layers
152
- self.gin_channels = gin_channels
153
- self.p_dropout = p_dropout
154
-
155
- self.in_layers = torch.nn.ModuleList()
156
- self.res_skip_layers = torch.nn.ModuleList()
157
- self.drop = nn.Dropout(p_dropout)
158
-
159
- if gin_channels != 0:
160
- cond_layer = torch.nn.Conv1d(
161
- gin_channels, 2 * hidden_channels * n_layers, 1
162
- )
163
- self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
164
-
165
- for i in range(n_layers):
166
- dilation = dilation_rate**i
167
- padding = int((kernel_size * dilation - dilation) / 2)
168
- in_layer = torch.nn.Conv1d(
169
- hidden_channels,
170
- 2 * hidden_channels,
171
- kernel_size,
172
- dilation=dilation,
173
- padding=padding,
174
- )
175
- in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
176
- self.in_layers.append(in_layer)
177
-
178
- # last one is not necessary
179
- if i < n_layers - 1:
180
- res_skip_channels = 2 * hidden_channels
181
- else:
182
- res_skip_channels = hidden_channels
183
-
184
- res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
185
- res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
186
- self.res_skip_layers.append(res_skip_layer)
187
-
188
- def forward(self, x, x_mask, g=None, **kwargs):
189
- output = torch.zeros_like(x)
190
- n_channels_tensor = torch.IntTensor([self.hidden_channels])
191
-
192
- if g is not None:
193
- g = self.cond_layer(g)
194
-
195
- for i in range(self.n_layers):
196
- x_in = self.in_layers[i](x)
197
- if g is not None:
198
- cond_offset = i * 2 * self.hidden_channels
199
- g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
200
- else:
201
- g_l = torch.zeros_like(x_in)
202
-
203
- acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
204
- acts = self.drop(acts)
205
-
206
- res_skip_acts = self.res_skip_layers[i](acts)
207
- if i < self.n_layers - 1:
208
- res_acts = res_skip_acts[:, : self.hidden_channels, :]
209
- x = (x + res_acts) * x_mask
210
- output = output + res_skip_acts[:, self.hidden_channels :, :]
211
- else:
212
- output = output + res_skip_acts
213
- return output * x_mask
214
-
215
- def remove_weight_norm(self):
216
- if self.gin_channels != 0:
217
- torch.nn.utils.remove_weight_norm(self.cond_layer)
218
- for l in self.in_layers:
219
- torch.nn.utils.remove_weight_norm(l)
220
- for l in self.res_skip_layers:
221
- torch.nn.utils.remove_weight_norm(l)
222
-
223
-
224
- class ResBlock1(torch.nn.Module):
225
- def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
226
- super(ResBlock1, self).__init__()
227
- self.convs1 = nn.ModuleList(
228
- [
229
- weight_norm(
230
- Conv1d(
231
- channels,
232
- channels,
233
- kernel_size,
234
- 1,
235
- dilation=dilation[0],
236
- padding=get_padding(kernel_size, dilation[0]),
237
- )
238
- ),
239
- weight_norm(
240
- Conv1d(
241
- channels,
242
- channels,
243
- kernel_size,
244
- 1,
245
- dilation=dilation[1],
246
- padding=get_padding(kernel_size, dilation[1]),
247
- )
248
- ),
249
- weight_norm(
250
- Conv1d(
251
- channels,
252
- channels,
253
- kernel_size,
254
- 1,
255
- dilation=dilation[2],
256
- padding=get_padding(kernel_size, dilation[2]),
257
- )
258
- ),
259
- ]
260
- )
261
- self.convs1.apply(init_weights)
262
-
263
- self.convs2 = nn.ModuleList(
264
- [
265
- weight_norm(
266
- Conv1d(
267
- channels,
268
- channels,
269
- kernel_size,
270
- 1,
271
- dilation=1,
272
- padding=get_padding(kernel_size, 1),
273
- )
274
- ),
275
- weight_norm(
276
- Conv1d(
277
- channels,
278
- channels,
279
- kernel_size,
280
- 1,
281
- dilation=1,
282
- padding=get_padding(kernel_size, 1),
283
- )
284
- ),
285
- weight_norm(
286
- Conv1d(
287
- channels,
288
- channels,
289
- kernel_size,
290
- 1,
291
- dilation=1,
292
- padding=get_padding(kernel_size, 1),
293
- )
294
- ),
295
- ]
296
- )
297
- self.convs2.apply(init_weights)
298
-
299
- def forward(self, x, x_mask=None):
300
- for c1, c2 in zip(self.convs1, self.convs2):
301
- xt = F.leaky_relu(x, LRELU_SLOPE)
302
- if x_mask is not None:
303
- xt = xt * x_mask
304
- xt = c1(xt)
305
- xt = F.leaky_relu(xt, LRELU_SLOPE)
306
- if x_mask is not None:
307
- xt = xt * x_mask
308
- xt = c2(xt)
309
- x = xt + x
310
- if x_mask is not None:
311
- x = x * x_mask
312
- return x
313
-
314
- def remove_weight_norm(self):
315
- for l in self.convs1:
316
- remove_weight_norm(l)
317
- for l in self.convs2:
318
- remove_weight_norm(l)
319
-
320
-
321
- class ResBlock2(torch.nn.Module):
322
- def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
323
- super(ResBlock2, self).__init__()
324
- self.convs = nn.ModuleList(
325
- [
326
- weight_norm(
327
- Conv1d(
328
- channels,
329
- channels,
330
- kernel_size,
331
- 1,
332
- dilation=dilation[0],
333
- padding=get_padding(kernel_size, dilation[0]),
334
- )
335
- ),
336
- weight_norm(
337
- Conv1d(
338
- channels,
339
- channels,
340
- kernel_size,
341
- 1,
342
- dilation=dilation[1],
343
- padding=get_padding(kernel_size, dilation[1]),
344
- )
345
- ),
346
- ]
347
- )
348
- self.convs.apply(init_weights)
349
-
350
- def forward(self, x, x_mask=None):
351
- for c in self.convs:
352
- xt = F.leaky_relu(x, LRELU_SLOPE)
353
- if x_mask is not None:
354
- xt = xt * x_mask
355
- xt = c(xt)
356
- x = xt + x
357
- if x_mask is not None:
358
- x = x * x_mask
359
- return x
360
-
361
- def remove_weight_norm(self):
362
- for l in self.convs:
363
- remove_weight_norm(l)
364
-
365
-
366
- class Log(nn.Module):
367
- def forward(self, x, x_mask, reverse=False, **kwargs):
368
- if not reverse:
369
- y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
370
- logdet = torch.sum(-y, [1, 2])
371
- return y, logdet
372
- else:
373
- x = torch.exp(x) * x_mask
374
- return x
375
-
376
-
377
- class Flip(nn.Module):
378
- def forward(self, x, *args, reverse=False, **kwargs):
379
- x = torch.flip(x, [1])
380
- if not reverse:
381
- logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
382
- return x, logdet
383
- else:
384
- return x
385
-
386
-
387
- class ElementwiseAffine(nn.Module):
388
- def __init__(self, channels):
389
- super().__init__()
390
- self.channels = channels
391
- self.m = nn.Parameter(torch.zeros(channels, 1))
392
- self.logs = nn.Parameter(torch.zeros(channels, 1))
393
-
394
- def forward(self, x, x_mask, reverse=False, **kwargs):
395
- if not reverse:
396
- y = self.m + torch.exp(self.logs) * x
397
- y = y * x_mask
398
- logdet = torch.sum(self.logs * x_mask, [1, 2])
399
- return y, logdet
400
- else:
401
- x = (x - self.m) * torch.exp(-self.logs) * x_mask
402
- return x
403
-
404
-
405
- class ResidualCouplingLayer(nn.Module):
406
- def __init__(
407
- self,
408
- channels,
409
- hidden_channels,
410
- kernel_size,
411
- dilation_rate,
412
- n_layers,
413
- p_dropout=0,
414
- gin_channels=0,
415
- mean_only=False,
416
- ):
417
- assert channels % 2 == 0, "channels should be divisible by 2"
418
- super().__init__()
419
- self.channels = channels
420
- self.hidden_channels = hidden_channels
421
- self.kernel_size = kernel_size
422
- self.dilation_rate = dilation_rate
423
- self.n_layers = n_layers
424
- self.half_channels = channels // 2
425
- self.mean_only = mean_only
426
-
427
- self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
428
- self.enc = WN(
429
- hidden_channels,
430
- kernel_size,
431
- dilation_rate,
432
- n_layers,
433
- p_dropout=p_dropout,
434
- gin_channels=gin_channels,
435
- )
436
- self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
437
- self.post.weight.data.zero_()
438
- self.post.bias.data.zero_()
439
-
440
- def forward(self, x, x_mask, g=None, reverse=False):
441
- x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
442
- h = self.pre(x0) * x_mask
443
- h = self.enc(h, x_mask, g=g)
444
- stats = self.post(h) * x_mask
445
- if not self.mean_only:
446
- m, logs = torch.split(stats, [self.half_channels] * 2, 1)
447
- else:
448
- m = stats
449
- logs = torch.zeros_like(m)
450
-
451
- if not reverse:
452
- x1 = m + x1 * torch.exp(logs) * x_mask
453
- x = torch.cat([x0, x1], 1)
454
- logdet = torch.sum(logs, [1, 2])
455
- return x, logdet
456
- else:
457
- x1 = (x1 - m) * torch.exp(-logs) * x_mask
458
- x = torch.cat([x0, x1], 1)
459
- return x
460
-
461
- def remove_weight_norm(self):
462
- self.enc.remove_weight_norm()
463
-
464
-
465
- class ConvFlow(nn.Module):
466
- def __init__(
467
- self,
468
- in_channels,
469
- filter_channels,
470
- kernel_size,
471
- n_layers,
472
- num_bins=10,
473
- tail_bound=5.0,
474
- ):
475
- super().__init__()
476
- self.in_channels = in_channels
477
- self.filter_channels = filter_channels
478
- self.kernel_size = kernel_size
479
- self.n_layers = n_layers
480
- self.num_bins = num_bins
481
- self.tail_bound = tail_bound
482
- self.half_channels = in_channels // 2
483
-
484
- self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
485
- self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
486
- self.proj = nn.Conv1d(
487
- filter_channels, self.half_channels * (num_bins * 3 - 1), 1
488
- )
489
- self.proj.weight.data.zero_()
490
- self.proj.bias.data.zero_()
491
-
492
- def forward(self, x, x_mask, g=None, reverse=False):
493
- x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
494
- h = self.pre(x0)
495
- h = self.convs(h, x_mask, g=g)
496
- h = self.proj(h) * x_mask
497
-
498
- b, c, t = x0.shape
499
- h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
500
-
501
- unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
502
- unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
503
- self.filter_channels
504
- )
505
- unnormalized_derivatives = h[..., 2 * self.num_bins :]
506
-
507
- x1, logabsdet = piecewise_rational_quadratic_transform(
508
- x1,
509
- unnormalized_widths,
510
- unnormalized_heights,
511
- unnormalized_derivatives,
512
- inverse=reverse,
513
- tails="linear",
514
- tail_bound=self.tail_bound,
515
- )
516
-
517
- x = torch.cat([x0, x1], 1) * x_mask
518
- logdet = torch.sum(logabsdet * x_mask, [1, 2])
519
- if not reverse:
520
- return x, logdet
521
- else:
522
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/infer_pack/transforms.py DELETED
@@ -1,209 +0,0 @@
1
- import torch
2
- from torch.nn import functional as F
3
-
4
- import numpy as np
5
-
6
-
7
- DEFAULT_MIN_BIN_WIDTH = 1e-3
8
- DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
- DEFAULT_MIN_DERIVATIVE = 1e-3
10
-
11
-
12
- def piecewise_rational_quadratic_transform(
13
- inputs,
14
- unnormalized_widths,
15
- unnormalized_heights,
16
- unnormalized_derivatives,
17
- inverse=False,
18
- tails=None,
19
- tail_bound=1.0,
20
- min_bin_width=DEFAULT_MIN_BIN_WIDTH,
21
- min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
22
- min_derivative=DEFAULT_MIN_DERIVATIVE,
23
- ):
24
- if tails is None:
25
- spline_fn = rational_quadratic_spline
26
- spline_kwargs = {}
27
- else:
28
- spline_fn = unconstrained_rational_quadratic_spline
29
- spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
30
-
31
- outputs, logabsdet = spline_fn(
32
- inputs=inputs,
33
- unnormalized_widths=unnormalized_widths,
34
- unnormalized_heights=unnormalized_heights,
35
- unnormalized_derivatives=unnormalized_derivatives,
36
- inverse=inverse,
37
- min_bin_width=min_bin_width,
38
- min_bin_height=min_bin_height,
39
- min_derivative=min_derivative,
40
- **spline_kwargs
41
- )
42
- return outputs, logabsdet
43
-
44
-
45
- def searchsorted(bin_locations, inputs, eps=1e-6):
46
- bin_locations[..., -1] += eps
47
- return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
48
-
49
-
50
- def unconstrained_rational_quadratic_spline(
51
- inputs,
52
- unnormalized_widths,
53
- unnormalized_heights,
54
- unnormalized_derivatives,
55
- inverse=False,
56
- tails="linear",
57
- tail_bound=1.0,
58
- min_bin_width=DEFAULT_MIN_BIN_WIDTH,
59
- min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
60
- min_derivative=DEFAULT_MIN_DERIVATIVE,
61
- ):
62
- inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
63
- outside_interval_mask = ~inside_interval_mask
64
-
65
- outputs = torch.zeros_like(inputs)
66
- logabsdet = torch.zeros_like(inputs)
67
-
68
- if tails == "linear":
69
- unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
70
- constant = np.log(np.exp(1 - min_derivative) - 1)
71
- unnormalized_derivatives[..., 0] = constant
72
- unnormalized_derivatives[..., -1] = constant
73
-
74
- outputs[outside_interval_mask] = inputs[outside_interval_mask]
75
- logabsdet[outside_interval_mask] = 0
76
- else:
77
- raise RuntimeError("{} tails are not implemented.".format(tails))
78
-
79
- (
80
- outputs[inside_interval_mask],
81
- logabsdet[inside_interval_mask],
82
- ) = rational_quadratic_spline(
83
- inputs=inputs[inside_interval_mask],
84
- unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
- unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
- unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
- inverse=inverse,
88
- left=-tail_bound,
89
- right=tail_bound,
90
- bottom=-tail_bound,
91
- top=tail_bound,
92
- min_bin_width=min_bin_width,
93
- min_bin_height=min_bin_height,
94
- min_derivative=min_derivative,
95
- )
96
-
97
- return outputs, logabsdet
98
-
99
-
100
- def rational_quadratic_spline(
101
- inputs,
102
- unnormalized_widths,
103
- unnormalized_heights,
104
- unnormalized_derivatives,
105
- inverse=False,
106
- left=0.0,
107
- right=1.0,
108
- bottom=0.0,
109
- top=1.0,
110
- min_bin_width=DEFAULT_MIN_BIN_WIDTH,
111
- min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
112
- min_derivative=DEFAULT_MIN_DERIVATIVE,
113
- ):
114
- if torch.min(inputs) < left or torch.max(inputs) > right:
115
- raise ValueError("Input to a transform is not within its domain")
116
-
117
- num_bins = unnormalized_widths.shape[-1]
118
-
119
- if min_bin_width * num_bins > 1.0:
120
- raise ValueError("Minimal bin width too large for the number of bins")
121
- if min_bin_height * num_bins > 1.0:
122
- raise ValueError("Minimal bin height too large for the number of bins")
123
-
124
- widths = F.softmax(unnormalized_widths, dim=-1)
125
- widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
126
- cumwidths = torch.cumsum(widths, dim=-1)
127
- cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
128
- cumwidths = (right - left) * cumwidths + left
129
- cumwidths[..., 0] = left
130
- cumwidths[..., -1] = right
131
- widths = cumwidths[..., 1:] - cumwidths[..., :-1]
132
-
133
- derivatives = min_derivative + F.softplus(unnormalized_derivatives)
134
-
135
- heights = F.softmax(unnormalized_heights, dim=-1)
136
- heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
137
- cumheights = torch.cumsum(heights, dim=-1)
138
- cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
139
- cumheights = (top - bottom) * cumheights + bottom
140
- cumheights[..., 0] = bottom
141
- cumheights[..., -1] = top
142
- heights = cumheights[..., 1:] - cumheights[..., :-1]
143
-
144
- if inverse:
145
- bin_idx = searchsorted(cumheights, inputs)[..., None]
146
- else:
147
- bin_idx = searchsorted(cumwidths, inputs)[..., None]
148
-
149
- input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
150
- input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
151
-
152
- input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
153
- delta = heights / widths
154
- input_delta = delta.gather(-1, bin_idx)[..., 0]
155
-
156
- input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
157
- input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
158
-
159
- input_heights = heights.gather(-1, bin_idx)[..., 0]
160
-
161
- if inverse:
162
- a = (inputs - input_cumheights) * (
163
- input_derivatives + input_derivatives_plus_one - 2 * input_delta
164
- ) + input_heights * (input_delta - input_derivatives)
165
- b = input_heights * input_derivatives - (inputs - input_cumheights) * (
166
- input_derivatives + input_derivatives_plus_one - 2 * input_delta
167
- )
168
- c = -input_delta * (inputs - input_cumheights)
169
-
170
- discriminant = b.pow(2) - 4 * a * c
171
- assert (discriminant >= 0).all()
172
-
173
- root = (2 * c) / (-b - torch.sqrt(discriminant))
174
- outputs = root * input_bin_widths + input_cumwidths
175
-
176
- theta_one_minus_theta = root * (1 - root)
177
- denominator = input_delta + (
178
- (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
179
- * theta_one_minus_theta
180
- )
181
- derivative_numerator = input_delta.pow(2) * (
182
- input_derivatives_plus_one * root.pow(2)
183
- + 2 * input_delta * theta_one_minus_theta
184
- + input_derivatives * (1 - root).pow(2)
185
- )
186
- logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
187
-
188
- return outputs, -logabsdet
189
- else:
190
- theta = (inputs - input_cumwidths) / input_bin_widths
191
- theta_one_minus_theta = theta * (1 - theta)
192
-
193
- numerator = input_heights * (
194
- input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
195
- )
196
- denominator = input_delta + (
197
- (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
198
- * theta_one_minus_theta
199
- )
200
- outputs = input_cumheights + numerator / denominator
201
-
202
- derivative_numerator = input_delta.pow(2) * (
203
- input_derivatives_plus_one * theta.pow(2)
204
- + 2 * input_delta * theta_one_minus_theta
205
- + input_derivatives * (1 - theta).pow(2)
206
- )
207
- logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
208
-
209
- return outputs, logabsdet
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/main.py DELETED
@@ -1,355 +0,0 @@
1
- import argparse
2
- import gc
3
- import hashlib
4
- import json
5
- import os
6
- import shlex
7
- import subprocess
8
- from contextlib import suppress
9
- from urllib.parse import urlparse, parse_qs
10
-
11
- import gradio as gr
12
- import librosa
13
- import numpy as np
14
- import soundfile as sf
15
- import sox
16
- import yt_dlp
17
- from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
18
- from pedalboard.io import AudioFile
19
- from pydub import AudioSegment
20
-
21
- from mdx import run_mdx
22
- from rvc import Config, load_hubert, get_vc, rvc_infer
23
-
24
- BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
25
-
26
- mdxnet_models_dir = os.path.join(BASE_DIR, 'mdxnet_models')
27
- rvc_models_dir = os.path.join(BASE_DIR, 'rvc_models')
28
- output_dir = os.path.join(BASE_DIR, 'song_output')
29
-
30
-
31
- def get_youtube_video_id(url, ignore_playlist=True):
32
- """
33
- Examples:
34
- http://youtu.be/SA2iWivDJiE
35
- http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu
36
- http://www.youtube.com/embed/SA2iWivDJiE
37
- http://www.youtube.com/v/SA2iWivDJiE?version=3&amp;hl=en_US
38
- """
39
- query = urlparse(url)
40
- if query.hostname == 'youtu.be':
41
- if query.path[1:] == 'watch':
42
- return query.query[2:]
43
- return query.path[1:]
44
-
45
- if query.hostname in {'www.youtube.com', 'youtube.com', 'music.youtube.com'}:
46
- if not ignore_playlist:
47
- # use case: get playlist id not current video in playlist
48
- with suppress(KeyError):
49
- return parse_qs(query.query)['list'][0]
50
- if query.path == '/watch':
51
- return parse_qs(query.query)['v'][0]
52
- if query.path[:7] == '/watch/':
53
- return query.path.split('/')[1]
54
- if query.path[:7] == '/embed/':
55
- return query.path.split('/')[2]
56
- if query.path[:3] == '/v/':
57
- return query.path.split('/')[2]
58
-
59
- # returns None for invalid YouTube url
60
- return None
61
-
62
-
63
- def yt_download(link):
64
- ydl_opts = {
65
- 'format': 'bestaudio',
66
- 'outtmpl': '%(title)s',
67
- 'nocheckcertificate': True,
68
- 'ignoreerrors': True,
69
- 'no_warnings': True,
70
- 'quiet': True,
71
- 'extractaudio': True,
72
- 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3'}],
73
- }
74
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
75
- result = ydl.extract_info(link, download=True)
76
- download_path = ydl.prepare_filename(result, outtmpl='%(title)s.mp3')
77
-
78
- return download_path
79
-
80
-
81
- def raise_exception(error_msg, is_webui):
82
- if is_webui:
83
- raise gr.Error(error_msg)
84
- else:
85
- raise Exception(error_msg)
86
-
87
-
88
- def get_rvc_model(voice_model, is_webui):
89
- rvc_model_filename, rvc_index_filename = None, None
90
- model_dir = os.path.join(rvc_models_dir, voice_model)
91
- for file in os.listdir(model_dir):
92
- ext = os.path.splitext(file)[1]
93
- if ext == '.pth':
94
- rvc_model_filename = file
95
- if ext == '.index':
96
- rvc_index_filename = file
97
-
98
- if rvc_model_filename is None:
99
- error_msg = f'No model file exists in {model_dir}.'
100
- raise_exception(error_msg, is_webui)
101
-
102
- return os.path.join(model_dir, rvc_model_filename), os.path.join(model_dir, rvc_index_filename) if rvc_index_filename else ''
103
-
104
-
105
- def get_audio_paths(song_dir):
106
- orig_song_path = None
107
- instrumentals_path = None
108
- main_vocals_dereverb_path = None
109
- backup_vocals_path = None
110
-
111
- for file in os.listdir(song_dir):
112
- if file.endswith('_Instrumental.wav'):
113
- instrumentals_path = os.path.join(song_dir, file)
114
- orig_song_path = instrumentals_path.replace('_Instrumental', '')
115
-
116
- elif file.endswith('_Vocals_Main_DeReverb.wav'):
117
- main_vocals_dereverb_path = os.path.join(song_dir, file)
118
-
119
- elif file.endswith('_Vocals_Backup.wav'):
120
- backup_vocals_path = os.path.join(song_dir, file)
121
-
122
- return orig_song_path, instrumentals_path, main_vocals_dereverb_path, backup_vocals_path
123
-
124
-
125
- def convert_to_stereo(audio_path):
126
- wave, sr = librosa.load(audio_path, mono=False, sr=44100)
127
-
128
- # check if mono
129
- if type(wave[0]) != np.ndarray:
130
- stereo_path = f'{os.path.splitext(audio_path)[0]}_stereo.wav'
131
- command = shlex.split(f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"')
132
- subprocess.run(command)
133
- return stereo_path
134
- else:
135
- return audio_path
136
-
137
-
138
- def pitch_shift(audio_path, pitch_change):
139
- output_path = f'{os.path.splitext(audio_path)[0]}_p{pitch_change}.wav'
140
- if not os.path.exists(output_path):
141
- y, sr = sf.read(audio_path)
142
- tfm = sox.Transformer()
143
- tfm.pitch(pitch_change)
144
- y_shifted = tfm.build_array(input_array=y, sample_rate_in=sr)
145
- sf.write(output_path, y_shifted, sr)
146
-
147
- return output_path
148
-
149
-
150
- def get_hash(filepath):
151
- with open(filepath, 'rb') as f:
152
- file_hash = hashlib.blake2b()
153
- while chunk := f.read(8192):
154
- file_hash.update(chunk)
155
-
156
- return file_hash.hexdigest()[:11]
157
-
158
-
159
- def display_progress(message, percent, is_webui, progress=None):
160
- if is_webui:
161
- progress(percent, desc=message)
162
- else:
163
- print(message)
164
-
165
-
166
- def preprocess_song(song_input, mdx_model_params, song_id, is_webui, input_type, progress=None):
167
- keep_orig = False
168
- if input_type == 'yt':
169
- display_progress('[~] Downloading song...', 0, is_webui, progress)
170
- song_link = song_input.split('&')[0]
171
- orig_song_path = yt_download(song_link)
172
- elif input_type == 'local':
173
- orig_song_path = song_input
174
- keep_orig = True
175
- else:
176
- orig_song_path = None
177
-
178
- song_output_dir = os.path.join(output_dir, song_id)
179
- orig_song_path = convert_to_stereo(orig_song_path)
180
-
181
- display_progress('[~] Separating Vocals from Instrumental...', 0.1, is_webui, progress)
182
- vocals_path, instrumentals_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'UVR-MDX-NET-Voc_FT.onnx'), orig_song_path, denoise=True, keep_orig=keep_orig)
183
-
184
- display_progress('[~] Separating Main Vocals from Backup Vocals...', 0.2, is_webui, progress)
185
- backup_vocals_path, main_vocals_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'UVR_MDXNET_KARA_2.onnx'), vocals_path, suffix='Backup', invert_suffix='Main', denoise=True)
186
-
187
- display_progress('[~] Applying DeReverb to Vocals...', 0.3, is_webui, progress)
188
- _, main_vocals_dereverb_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'Reverb_HQ_By_FoxJoy.onnx'), main_vocals_path, invert_suffix='DeReverb', exclude_main=True, denoise=True)
189
-
190
- return orig_song_path, vocals_path, instrumentals_path, main_vocals_path, backup_vocals_path, main_vocals_dereverb_path
191
-
192
-
193
- def voice_change(voice_model, vocals_path, output_path, pitch_change, f0_method, index_rate, filter_radius, rms_mix_rate, protect, crepe_hop_length, is_webui):
194
- rvc_model_path, rvc_index_path = get_rvc_model(voice_model, is_webui)
195
- device = 'cpu'
196
- config = Config(device, False)
197
- hubert_model = load_hubert(device, config.is_half, os.path.join(rvc_models_dir, 'hubert_base.pt'))
198
- cpt, version, net_g, tgt_sr, vc = get_vc(device, False, config, rvc_model_path)
199
-
200
- # convert main vocals
201
- rvc_infer(rvc_index_path, index_rate, vocals_path, output_path, pitch_change, f0_method, cpt, version, net_g, filter_radius, tgt_sr, rms_mix_rate, protect, crepe_hop_length, vc, hubert_model)
202
- del hubert_model, cpt
203
- gc.collect()
204
-
205
-
206
- def add_audio_effects(audio_path, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping):
207
- output_path = f'{os.path.splitext(audio_path)[0]}_mixed.wav'
208
-
209
- # Initialize audio effects plugins
210
- board = Pedalboard(
211
- [
212
- HighpassFilter(),
213
- Compressor(ratio=4, threshold_db=-15),
214
- Reverb(room_size=reverb_rm_size, dry_level=reverb_dry, wet_level=reverb_wet, damping=reverb_damping)
215
- ]
216
- )
217
-
218
- with AudioFile(audio_path) as f:
219
- with AudioFile(output_path, 'w', f.samplerate, f.num_channels) as o:
220
- # Read one second of audio at a time, until the file is empty:
221
- while f.tell() < f.frames:
222
- chunk = f.read(int(f.samplerate))
223
- effected = board(chunk, f.samplerate, reset=False)
224
- o.write(effected)
225
-
226
- return output_path
227
-
228
-
229
- def combine_audio(audio_paths, output_path, main_gain, backup_gain, inst_gain, output_format):
230
- main_vocal_audio = AudioSegment.from_wav(audio_paths[0]) - 4 + main_gain
231
- backup_vocal_audio = AudioSegment.from_wav(audio_paths[1]) - 6 + backup_gain
232
- instrumental_audio = AudioSegment.from_wav(audio_paths[2]) - 7 + inst_gain
233
- main_vocal_audio.overlay(backup_vocal_audio).overlay(instrumental_audio).export(output_path, format=output_format)
234
-
235
-
236
- def song_cover_pipeline(song_input, voice_model, pitch_change, keep_files,
237
- is_webui=0, main_gain=0, backup_gain=0, inst_gain=0, index_rate=0.5, filter_radius=3,
238
- rms_mix_rate=0.25, f0_method='rmvpe', crepe_hop_length=128, protect=0.33, pitch_change_all=0,
239
- reverb_rm_size=0.15, reverb_wet=0.2, reverb_dry=0.8, reverb_damping=0.7, output_format='mp3',
240
- progress=gr.Progress()):
241
- try:
242
- if not song_input or not voice_model:
243
- raise_exception('Ensure that the song input field and voice model field is filled.', is_webui)
244
-
245
- display_progress('[~] Starting AI Cover Generation Pipeline...', 0, is_webui, progress)
246
-
247
- with open(os.path.join(mdxnet_models_dir, 'model_data.json')) as infile:
248
- mdx_model_params = json.load(infile)
249
-
250
- # if youtube url
251
- if urlparse(song_input).scheme == 'https':
252
- input_type = 'yt'
253
- song_id = get_youtube_video_id(song_input)
254
- if song_id is None:
255
- error_msg = 'Invalid YouTube url.'
256
- raise_exception(error_msg, is_webui)
257
-
258
- # local audio file
259
- else:
260
- input_type = 'local'
261
- song_input = song_input.strip('\"')
262
- if os.path.exists(song_input):
263
- song_id = get_hash(song_input)
264
- else:
265
- error_msg = f'{song_input} does not exist.'
266
- song_id = None
267
- raise_exception(error_msg, is_webui)
268
-
269
- song_dir = os.path.join(output_dir, song_id)
270
-
271
- if not os.path.exists(song_dir):
272
- os.makedirs(song_dir)
273
- orig_song_path, vocals_path, instrumentals_path, main_vocals_path, backup_vocals_path, main_vocals_dereverb_path = preprocess_song(song_input, mdx_model_params, song_id, is_webui, input_type, progress)
274
-
275
- else:
276
- vocals_path, main_vocals_path = None, None
277
- paths = get_audio_paths(song_dir)
278
-
279
- # if any of the audio files aren't available or keep intermediate files, rerun preprocess
280
- if any(path is None for path in paths) or keep_files:
281
- orig_song_path, vocals_path, instrumentals_path, main_vocals_path, backup_vocals_path, main_vocals_dereverb_path = preprocess_song(song_input, mdx_model_params, song_id, is_webui, input_type, progress)
282
- else:
283
- orig_song_path, instrumentals_path, main_vocals_dereverb_path, backup_vocals_path = paths
284
-
285
- pitch_change = pitch_change * 12 + pitch_change_all
286
- ai_vocals_path = os.path.join(song_dir, f'{os.path.splitext(os.path.basename(orig_song_path))[0]}_{voice_model}_p{pitch_change}_i{index_rate}_fr{filter_radius}_rms{rms_mix_rate}_pro{protect}_{f0_method}{"" if f0_method != "mangio-crepe" else f"_{crepe_hop_length}"}.wav')
287
- ai_cover_path = os.path.join(song_dir, f'{os.path.splitext(os.path.basename(orig_song_path))[0]} ({voice_model} Ver).{output_format}')
288
-
289
- if not os.path.exists(ai_vocals_path):
290
- display_progress('[~] Converting voice using RVC...', 0.5, is_webui, progress)
291
- voice_change(voice_model, main_vocals_dereverb_path, ai_vocals_path, pitch_change, f0_method, index_rate, filter_radius, rms_mix_rate, protect, crepe_hop_length, is_webui)
292
-
293
- display_progress('[~] Applying audio effects to Vocals...', 0.8, is_webui, progress)
294
- ai_vocals_mixed_path = add_audio_effects(ai_vocals_path, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping)
295
-
296
- if pitch_change_all != 0:
297
- display_progress('[~] Applying overall pitch change', 0.85, is_webui, progress)
298
- instrumentals_path = pitch_shift(instrumentals_path, pitch_change_all)
299
- backup_vocals_path = pitch_shift(backup_vocals_path, pitch_change_all)
300
-
301
- display_progress('[~] Combining AI Vocals and Instrumentals...', 0.9, is_webui, progress)
302
- combine_audio([ai_vocals_mixed_path, backup_vocals_path, instrumentals_path], ai_cover_path, main_gain, backup_gain, inst_gain, output_format)
303
-
304
- if not keep_files:
305
- display_progress('[~] Removing intermediate audio files...', 0.95, is_webui, progress)
306
- intermediate_files = [vocals_path, main_vocals_path, ai_vocals_mixed_path]
307
- if pitch_change_all != 0:
308
- intermediate_files += [instrumentals_path, backup_vocals_path]
309
- for file in intermediate_files:
310
- if file and os.path.exists(file):
311
- os.remove(file)
312
-
313
- return ai_cover_path
314
-
315
- except Exception as e:
316
- raise_exception(str(e), is_webui)
317
-
318
-
319
- if __name__ == '__main__':
320
- parser = argparse.ArgumentParser(description='Generate a AI cover song in the song_output/id directory.', add_help=True)
321
- parser.add_argument('-i', '--song-input', type=str, required=True, help='Link to a YouTube video or the filepath to a local mp3/wav file to create an AI cover of')
322
- parser.add_argument('-dir', '--rvc-dirname', type=str, required=True, help='Name of the folder in the rvc_models directory containing the RVC model file and optional index file to use')
323
- parser.add_argument('-p', '--pitch-change', type=int, required=True, help='Change the pitch of AI Vocals only. Generally, use 1 for male to female and -1 for vice-versa. (Octaves)')
324
- parser.add_argument('-k', '--keep-files', action=argparse.BooleanOptionalAction, help='Whether to keep all intermediate audio files generated in the song_output/id directory, e.g. Isolated Vocals/Instrumentals')
325
- parser.add_argument('-ir', '--index-rate', type=float, default=0.5, help='A decimal number e.g. 0.5, used to reduce/resolve the timbre leakage problem. If set to 1, more biased towards the timbre quality of the training dataset')
326
- parser.add_argument('-fr', '--filter-radius', type=int, default=3, help='A number between 0 and 7. If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness.')
327
- parser.add_argument('-rms', '--rms-mix-rate', type=float, default=0.25, help="A decimal number e.g. 0.25. Control how much to use the original vocal's loudness (0) or a fixed loudness (1).")
328
- parser.add_argument('-palgo', '--pitch-detection-algo', type=str, default='rmvpe', help='Best option is rmvpe (clarity in vocals), then mangio-crepe (smoother vocals).')
329
- parser.add_argument('-hop', '--crepe-hop-length', type=int, default=128, help='If pitch detection algo is mangio-crepe, controls how often it checks for pitch changes in milliseconds. The higher the value, the faster the conversion and less risk of voice cracks, but there is less pitch accuracy. Recommended: 128.')
330
- parser.add_argument('-pro', '--protect', type=float, default=0.33, help='A decimal number e.g. 0.33. Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy.')
331
- parser.add_argument('-mv', '--main-vol', type=int, default=0, help='Volume change for AI main vocals in decibels. Use -3 to decrease by 3 decibels and 3 to increase by 3 decibels')
332
- parser.add_argument('-bv', '--backup-vol', type=int, default=0, help='Volume change for backup vocals in decibels')
333
- parser.add_argument('-iv', '--inst-vol', type=int, default=0, help='Volume change for instrumentals in decibels')
334
- parser.add_argument('-pall', '--pitch-change-all', type=int, default=0, help='Change the pitch/key of vocals and instrumentals. Changing this slightly reduces sound quality')
335
- parser.add_argument('-rsize', '--reverb-size', type=float, default=0.15, help='Reverb room size between 0 and 1')
336
- parser.add_argument('-rwet', '--reverb-wetness', type=float, default=0.2, help='Reverb wet level between 0 and 1')
337
- parser.add_argument('-rdry', '--reverb-dryness', type=float, default=0.8, help='Reverb dry level between 0 and 1')
338
- parser.add_argument('-rdamp', '--reverb-damping', type=float, default=0.7, help='Reverb damping between 0 and 1')
339
- parser.add_argument('-oformat', '--output-format', type=str, default='mp3', help='Output format of audio file. mp3 for smaller file size, wav for best quality')
340
- args = parser.parse_args()
341
-
342
- rvc_dirname = args.rvc_dirname
343
- if not os.path.exists(os.path.join(rvc_models_dir, rvc_dirname)):
344
- raise Exception(f'The folder {os.path.join(rvc_models_dir, rvc_dirname)} does not exist.')
345
-
346
- cover_path = song_cover_pipeline(args.song_input, rvc_dirname, args.pitch_change, args.keep_files,
347
- main_gain=args.main_vol, backup_gain=args.backup_vol, inst_gain=args.inst_vol,
348
- index_rate=args.index_rate, filter_radius=args.filter_radius,
349
- rms_mix_rate=args.rms_mix_rate, f0_method=args.pitch_detection_algo,
350
- crepe_hop_length=args.crepe_hop_length, protect=args.protect,
351
- pitch_change_all=args.pitch_change_all,
352
- reverb_rm_size=args.reverb_size, reverb_wet=args.reverb_wetness,
353
- reverb_dry=args.reverb_dryness, reverb_damping=args.reverb_damping,
354
- output_format=args.output_format)
355
- print(f'[+] Cover generated at {cover_path}')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/mdx.py DELETED
@@ -1,292 +0,0 @@
1
- import gc
2
- import hashlib
3
- import os
4
- import queue
5
- import threading
6
- import warnings
7
-
8
- import librosa
9
- import numpy as np
10
- import onnxruntime as ort
11
- import soundfile as sf
12
- import torch
13
- from tqdm import tqdm
14
-
15
- warnings.filterwarnings("ignore")
16
- stem_naming = {'Vocals': 'Instrumental', 'Other': 'Instruments', 'Instrumental': 'Vocals', 'Drums': 'Drumless', 'Bass': 'Bassless'}
17
-
18
-
19
- class MDXModel:
20
- def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000):
21
- self.dim_f = dim_f
22
- self.dim_t = dim_t
23
- self.dim_c = 4
24
- self.n_fft = n_fft
25
- self.hop = hop
26
- self.stem_name = stem_name
27
- self.compensation = compensation
28
-
29
- self.n_bins = self.n_fft // 2 + 1
30
- self.chunk_size = hop * (self.dim_t - 1)
31
- self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
32
-
33
- out_c = self.dim_c
34
-
35
- self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
36
-
37
- def stft(self, x):
38
- x = x.reshape([-1, self.chunk_size])
39
- x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
40
- x = torch.view_as_real(x)
41
- x = x.permute([0, 3, 1, 2])
42
- x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 4, self.n_bins, self.dim_t])
43
- return x[:, :, :self.dim_f]
44
-
45
- def istft(self, x, freq_pad=None):
46
- freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
47
- x = torch.cat([x, freq_pad], -2)
48
- # c = 4*2 if self.target_name=='*' else 2
49
- x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
50
- x = x.permute([0, 2, 3, 1])
51
- x = x.contiguous()
52
- x = torch.view_as_complex(x)
53
- x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
54
- return x.reshape([-1, 2, self.chunk_size])
55
-
56
-
57
- class MDX:
58
- DEFAULT_SR = 44100
59
- # Unit: seconds
60
- DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
61
- DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
62
-
63
- DEFAULT_PROCESSOR = 0
64
-
65
- def __init__(self, model_path: str, params: MDXModel, processor=DEFAULT_PROCESSOR):
66
-
67
- # Set the device and the provider (CPU or CUDA)
68
- #self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu')
69
- self.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
70
- #self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider']
71
- self.provider = ['CPUExecutionProvider']
72
-
73
- self.model = params
74
-
75
- # Load the ONNX model using ONNX Runtime
76
- self.ort = ort.InferenceSession(model_path, providers=self.provider)
77
- # Preload the model for faster performance
78
- self.ort.run(None, {'input': torch.rand(1, 4, params.dim_f, params.dim_t).numpy()})
79
- self.process = lambda spec: self.ort.run(None, {'input': spec.cpu().numpy()})[0]
80
-
81
- self.prog = None
82
-
83
- @staticmethod
84
- def get_hash(model_path):
85
- try:
86
- with open(model_path, 'rb') as f:
87
- f.seek(- 10000 * 1024, 2)
88
- model_hash = hashlib.md5(f.read()).hexdigest()
89
- except:
90
- model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest()
91
-
92
- return model_hash
93
-
94
- @staticmethod
95
- def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE):
96
- """
97
- Segment or join segmented wave array
98
-
99
- Args:
100
- wave: (np.array) Wave array to be segmented or joined
101
- combine: (bool) If True, combines segmented wave array. If False, segments wave array.
102
- chunk_size: (int) Size of each segment (in samples)
103
- margin_size: (int) Size of margin between segments (in samples)
104
-
105
- Returns:
106
- numpy array: Segmented or joined wave array
107
- """
108
-
109
- if combine:
110
- processed_wave = None # Initializing as None instead of [] for later numpy array concatenation
111
- for segment_count, segment in enumerate(wave):
112
- start = 0 if segment_count == 0 else margin_size
113
- end = None if segment_count == len(wave) - 1 else -margin_size
114
- if margin_size == 0:
115
- end = None
116
- if processed_wave is None: # Create array for first segment
117
- processed_wave = segment[:, start:end]
118
- else: # Concatenate to existing array for subsequent segments
119
- processed_wave = np.concatenate((processed_wave, segment[:, start:end]), axis=-1)
120
-
121
- else:
122
- processed_wave = []
123
- sample_count = wave.shape[-1]
124
-
125
- if chunk_size <= 0 or chunk_size > sample_count:
126
- chunk_size = sample_count
127
-
128
- if margin_size > chunk_size:
129
- margin_size = chunk_size
130
-
131
- for segment_count, skip in enumerate(range(0, sample_count, chunk_size)):
132
-
133
- margin = 0 if segment_count == 0 else margin_size
134
- end = min(skip + chunk_size + margin_size, sample_count)
135
- start = skip - margin
136
-
137
- cut = wave[:, start:end].copy()
138
- processed_wave.append(cut)
139
-
140
- if end == sample_count:
141
- break
142
-
143
- return processed_wave
144
-
145
- def pad_wave(self, wave):
146
- """
147
- Pad the wave array to match the required chunk size
148
-
149
- Args:
150
- wave: (np.array) Wave array to be padded
151
-
152
- Returns:
153
- tuple: (padded_wave, pad, trim)
154
- - padded_wave: Padded wave array
155
- - pad: Number of samples that were padded
156
- - trim: Number of samples that were trimmed
157
- """
158
- n_sample = wave.shape[1]
159
- trim = self.model.n_fft // 2
160
- gen_size = self.model.chunk_size - 2 * trim
161
- pad = gen_size - n_sample % gen_size
162
-
163
- # Padded wave
164
- wave_p = np.concatenate((np.zeros((2, trim)), wave, np.zeros((2, pad)), np.zeros((2, trim))), 1)
165
-
166
- mix_waves = []
167
- for i in range(0, n_sample + pad, gen_size):
168
- waves = np.array(wave_p[:, i:i + self.model.chunk_size])
169
- mix_waves.append(waves)
170
-
171
- print(self.device)
172
-
173
- mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
174
-
175
- return mix_waves, pad, trim
176
-
177
- def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
178
- """
179
- Process each wave segment in a multi-threaded environment
180
-
181
- Args:
182
- mix_waves: (torch.Tensor) Wave segments to be processed
183
- trim: (int) Number of samples trimmed during padding
184
- pad: (int) Number of samples padded during padding
185
- q: (queue.Queue) Queue to hold the processed wave segments
186
- _id: (int) Identifier of the processed wave segment
187
-
188
- Returns:
189
- numpy array: Processed wave segment
190
- """
191
- mix_waves = mix_waves.split(1)
192
- with torch.no_grad():
193
- pw = []
194
- for mix_wave in mix_waves:
195
- self.prog.update()
196
- spec = self.model.stft(mix_wave)
197
- processed_spec = torch.tensor(self.process(spec))
198
- processed_wav = self.model.istft(processed_spec.to(self.device))
199
- processed_wav = processed_wav[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).cpu().numpy()
200
- pw.append(processed_wav)
201
- processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
202
- q.put({_id: processed_signal})
203
- return processed_signal
204
-
205
- def process_wave(self, wave: np.array, mt_threads=1):
206
- """
207
- Process the wave array in a multi-threaded environment
208
-
209
- Args:
210
- wave: (np.array) Wave array to be processed
211
- mt_threads: (int) Number of threads to be used for processing
212
-
213
- Returns:
214
- numpy array: Processed wave array
215
- """
216
- self.prog = tqdm(total=0)
217
- chunk = wave.shape[-1] // mt_threads
218
- waves = self.segment(wave, False, chunk)
219
-
220
- # Create a queue to hold the processed wave segments
221
- q = queue.Queue()
222
- threads = []
223
- for c, batch in enumerate(waves):
224
- mix_waves, pad, trim = self.pad_wave(batch)
225
- self.prog.total = len(mix_waves) * mt_threads
226
- thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c))
227
- thread.start()
228
- threads.append(thread)
229
- for thread in threads:
230
- thread.join()
231
- self.prog.close()
232
-
233
- processed_batches = []
234
- while not q.empty():
235
- processed_batches.append(q.get())
236
- processed_batches = [list(wave.values())[0] for wave in
237
- sorted(processed_batches, key=lambda d: list(d.keys())[0])]
238
- assert len(processed_batches) == len(waves), 'Incomplete processed batches, please reduce batch size!'
239
- return self.segment(processed_batches, True, chunk)
240
-
241
-
242
- def run_mdx(model_params, output_dir, model_path, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2):
243
- device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
244
-
245
- #device_properties = torch.cuda.get_device_properties(device)
246
- print("Device", device)
247
- vram_gb = 12 #device_properties.total_memory / 1024**3
248
- m_threads = 1 if vram_gb < 8 else 2
249
-
250
- model_hash = MDX.get_hash(model_path)
251
- mp = model_params.get(model_hash)
252
- model = MDXModel(
253
- device,
254
- dim_f=mp["mdx_dim_f_set"],
255
- dim_t=2 ** mp["mdx_dim_t_set"],
256
- n_fft=mp["mdx_n_fft_scale_set"],
257
- stem_name=mp["primary_stem"],
258
- compensation=mp["compensate"]
259
- )
260
-
261
- mdx_sess = MDX(model_path, model)
262
- wave, sr = librosa.load(filename, mono=False, sr=44100)
263
- # normalizing input wave gives better output
264
- peak = max(np.max(wave), abs(np.min(wave)))
265
- wave /= peak
266
- if denoise:
267
- wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))
268
- wave_processed *= 0.5
269
- else:
270
- wave_processed = mdx_sess.process_wave(wave, m_threads)
271
- # return to previous peak
272
- wave_processed *= peak
273
- stem_name = model.stem_name if suffix is None else suffix
274
-
275
- main_filepath = None
276
- if not exclude_main:
277
- main_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav")
278
- sf.write(main_filepath, wave_processed.T, sr)
279
-
280
- invert_filepath = None
281
- if not exclude_inversion:
282
- diff_stem_name = stem_naming.get(stem_name) if invert_suffix is None else invert_suffix
283
- stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
284
- invert_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav")
285
- sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)
286
-
287
- if not keep_orig:
288
- os.remove(filename)
289
-
290
- del mdx_sess, wave_processed, wave
291
- gc.collect()
292
- return main_filepath, invert_filepath
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/my_utils.py DELETED
@@ -1,21 +0,0 @@
1
- import ffmpeg
2
- import numpy as np
3
-
4
-
5
- def load_audio(file, sr):
6
- try:
7
- # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
8
- # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
9
- # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
10
- file = (
11
- file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
12
- ) # 防止小白拷路径头尾带了空格和"和回车
13
- out, _ = (
14
- ffmpeg.input(file, threads=0)
15
- .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
16
- .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
17
- )
18
- except Exception as e:
19
- raise RuntimeError(f"Failed to load audio: {e}")
20
-
21
- return np.frombuffer(out, np.float32).flatten()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/rmvpe.py DELETED
@@ -1,432 +0,0 @@
1
- import torch, numpy as np
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
-
5
-
6
-
7
- class BiGRU(nn.Module):
8
- def __init__(self, input_features, hidden_features, num_layers):
9
- super(BiGRU, self).__init__()
10
- self.gru = nn.GRU(
11
- input_features,
12
- hidden_features,
13
- num_layers=num_layers,
14
- batch_first=True,
15
- bidirectional=True,
16
- )
17
-
18
- def forward(self, x):
19
- return self.gru(x)[0]
20
-
21
-
22
- class ConvBlockRes(nn.Module):
23
- def __init__(self, in_channels, out_channels, momentum=0.01):
24
- super(ConvBlockRes, self).__init__()
25
- self.conv = nn.Sequential(
26
- nn.Conv2d(
27
- in_channels=in_channels,
28
- out_channels=out_channels,
29
- kernel_size=(3, 3),
30
- stride=(1, 1),
31
- padding=(1, 1),
32
- bias=False,
33
- ),
34
- nn.BatchNorm2d(out_channels, momentum=momentum),
35
- nn.ReLU(),
36
- nn.Conv2d(
37
- in_channels=out_channels,
38
- out_channels=out_channels,
39
- kernel_size=(3, 3),
40
- stride=(1, 1),
41
- padding=(1, 1),
42
- bias=False,
43
- ),
44
- nn.BatchNorm2d(out_channels, momentum=momentum),
45
- nn.ReLU(),
46
- )
47
- if in_channels != out_channels:
48
- self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
49
- self.is_shortcut = True
50
- else:
51
- self.is_shortcut = False
52
-
53
- def forward(self, x):
54
- if self.is_shortcut:
55
- return self.conv(x) + self.shortcut(x)
56
- else:
57
- return self.conv(x) + x
58
-
59
-
60
- class Encoder(nn.Module):
61
- def __init__(
62
- self,
63
- in_channels,
64
- in_size,
65
- n_encoders,
66
- kernel_size,
67
- n_blocks,
68
- out_channels=16,
69
- momentum=0.01,
70
- ):
71
- super(Encoder, self).__init__()
72
- self.n_encoders = n_encoders
73
- self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
74
- self.layers = nn.ModuleList()
75
- self.latent_channels = []
76
- for i in range(self.n_encoders):
77
- self.layers.append(
78
- ResEncoderBlock(
79
- in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
80
- )
81
- )
82
- self.latent_channels.append([out_channels, in_size])
83
- in_channels = out_channels
84
- out_channels *= 2
85
- in_size //= 2
86
- self.out_size = in_size
87
- self.out_channel = out_channels
88
-
89
- def forward(self, x):
90
- concat_tensors = []
91
- x = self.bn(x)
92
- for i in range(self.n_encoders):
93
- _, x = self.layers[i](x)
94
- concat_tensors.append(_)
95
- return x, concat_tensors
96
-
97
-
98
- class ResEncoderBlock(nn.Module):
99
- def __init__(
100
- self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
101
- ):
102
- super(ResEncoderBlock, self).__init__()
103
- self.n_blocks = n_blocks
104
- self.conv = nn.ModuleList()
105
- self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
106
- for i in range(n_blocks - 1):
107
- self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
108
- self.kernel_size = kernel_size
109
- if self.kernel_size is not None:
110
- self.pool = nn.AvgPool2d(kernel_size=kernel_size)
111
-
112
- def forward(self, x):
113
- for i in range(self.n_blocks):
114
- x = self.conv[i](x)
115
- if self.kernel_size is not None:
116
- return x, self.pool(x)
117
- else:
118
- return x
119
-
120
-
121
- class Intermediate(nn.Module): #
122
- def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
123
- super(Intermediate, self).__init__()
124
- self.n_inters = n_inters
125
- self.layers = nn.ModuleList()
126
- self.layers.append(
127
- ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
128
- )
129
- for i in range(self.n_inters - 1):
130
- self.layers.append(
131
- ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
132
- )
133
-
134
- def forward(self, x):
135
- for i in range(self.n_inters):
136
- x = self.layers[i](x)
137
- return x
138
-
139
-
140
- class ResDecoderBlock(nn.Module):
141
- def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
142
- super(ResDecoderBlock, self).__init__()
143
- out_padding = (0, 1) if stride == (1, 2) else (1, 1)
144
- self.n_blocks = n_blocks
145
- self.conv1 = nn.Sequential(
146
- nn.ConvTranspose2d(
147
- in_channels=in_channels,
148
- out_channels=out_channels,
149
- kernel_size=(3, 3),
150
- stride=stride,
151
- padding=(1, 1),
152
- output_padding=out_padding,
153
- bias=False,
154
- ),
155
- nn.BatchNorm2d(out_channels, momentum=momentum),
156
- nn.ReLU(),
157
- )
158
- self.conv2 = nn.ModuleList()
159
- self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
160
- for i in range(n_blocks - 1):
161
- self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
162
-
163
- def forward(self, x, concat_tensor):
164
- x = self.conv1(x)
165
- x = torch.cat((x, concat_tensor), dim=1)
166
- for i in range(self.n_blocks):
167
- x = self.conv2[i](x)
168
- return x
169
-
170
-
171
- class Decoder(nn.Module):
172
- def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
173
- super(Decoder, self).__init__()
174
- self.layers = nn.ModuleList()
175
- self.n_decoders = n_decoders
176
- for i in range(self.n_decoders):
177
- out_channels = in_channels // 2
178
- self.layers.append(
179
- ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
180
- )
181
- in_channels = out_channels
182
-
183
- def forward(self, x, concat_tensors):
184
- for i in range(self.n_decoders):
185
- x = self.layers[i](x, concat_tensors[-1 - i])
186
- return x
187
-
188
-
189
- class DeepUnet(nn.Module):
190
- def __init__(
191
- self,
192
- kernel_size,
193
- n_blocks,
194
- en_de_layers=5,
195
- inter_layers=4,
196
- in_channels=1,
197
- en_out_channels=16,
198
- ):
199
- super(DeepUnet, self).__init__()
200
- self.encoder = Encoder(
201
- in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
202
- )
203
- self.intermediate = Intermediate(
204
- self.encoder.out_channel // 2,
205
- self.encoder.out_channel,
206
- inter_layers,
207
- n_blocks,
208
- )
209
- self.decoder = Decoder(
210
- self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
211
- )
212
-
213
- def forward(self, x):
214
- x, concat_tensors = self.encoder(x)
215
- x = self.intermediate(x)
216
- x = self.decoder(x, concat_tensors)
217
- return x
218
-
219
-
220
- class E2E(nn.Module):
221
- def __init__(
222
- self,
223
- n_blocks,
224
- n_gru,
225
- kernel_size,
226
- en_de_layers=5,
227
- inter_layers=4,
228
- in_channels=1,
229
- en_out_channels=16,
230
- ):
231
- super(E2E, self).__init__()
232
- self.unet = DeepUnet(
233
- kernel_size,
234
- n_blocks,
235
- en_de_layers,
236
- inter_layers,
237
- in_channels,
238
- en_out_channels,
239
- )
240
- self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
241
- if n_gru:
242
- self.fc = nn.Sequential(
243
- BiGRU(3 * 128, 256, n_gru),
244
- nn.Linear(512, 360),
245
- nn.Dropout(0.25),
246
- nn.Sigmoid(),
247
- )
248
- else:
249
- self.fc = nn.Sequential(
250
- nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
251
- )
252
-
253
- def forward(self, mel):
254
- mel = mel.transpose(-1, -2).unsqueeze(1)
255
- x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
256
- x = self.fc(x)
257
- return x
258
-
259
-
260
- from librosa.filters import mel
261
-
262
-
263
- class MelSpectrogram(torch.nn.Module):
264
- def __init__(
265
- self,
266
- is_half,
267
- n_mel_channels,
268
- sampling_rate,
269
- win_length,
270
- hop_length,
271
- n_fft=None,
272
- mel_fmin=0,
273
- mel_fmax=None,
274
- clamp=1e-5,
275
- ):
276
- super().__init__()
277
- n_fft = win_length if n_fft is None else n_fft
278
- self.hann_window = {}
279
- mel_basis = mel(
280
- sr=sampling_rate,
281
- n_fft=n_fft,
282
- n_mels=n_mel_channels,
283
- fmin=mel_fmin,
284
- fmax=mel_fmax,
285
- htk=True,
286
- )
287
- mel_basis = torch.from_numpy(mel_basis).float()
288
- self.register_buffer("mel_basis", mel_basis)
289
- self.n_fft = win_length if n_fft is None else n_fft
290
- self.hop_length = hop_length
291
- self.win_length = win_length
292
- self.sampling_rate = sampling_rate
293
- self.n_mel_channels = n_mel_channels
294
- self.clamp = clamp
295
- self.is_half = is_half
296
-
297
- def forward(self, audio, keyshift=0, speed=1, center=True):
298
- factor = 2 ** (keyshift / 12)
299
- n_fft_new = int(np.round(self.n_fft * factor))
300
- win_length_new = int(np.round(self.win_length * factor))
301
- hop_length_new = int(np.round(self.hop_length * speed))
302
- keyshift_key = str(keyshift) + "_" + str(audio.device)
303
- if keyshift_key not in self.hann_window:
304
- self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
305
- audio.device
306
- )
307
- fft = torch.stft(
308
- audio,
309
- n_fft=n_fft_new,
310
- hop_length=hop_length_new,
311
- win_length=win_length_new,
312
- window=self.hann_window[keyshift_key],
313
- center=center,
314
- return_complex=True,
315
- )
316
- magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
317
- if keyshift != 0:
318
- size = self.n_fft // 2 + 1
319
- resize = magnitude.size(1)
320
- if resize < size:
321
- magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
322
- magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
323
- mel_output = torch.matmul(self.mel_basis, magnitude)
324
- if self.is_half == True:
325
- mel_output = mel_output.half()
326
- log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
327
- return log_mel_spec
328
-
329
-
330
- class RMVPE:
331
- def __init__(self, model_path, is_half, device=None):
332
- self.resample_kernel = {}
333
- model = E2E(4, 1, (2, 2))
334
- ckpt = torch.load(model_path, map_location="cpu")
335
- model.load_state_dict(ckpt)
336
- model.eval()
337
- if is_half == True:
338
- model = model.half()
339
- self.model = model
340
- self.resample_kernel = {}
341
- self.is_half = is_half
342
- if device is None:
343
- device = "cuda" if torch.cuda.is_available() else "cpu"
344
- self.device = device
345
- self.mel_extractor = MelSpectrogram(
346
- is_half, 128, 16000, 1024, 160, None, 30, 8000
347
- ).to(device)
348
- self.model = self.model.to(device)
349
- cents_mapping = 20 * np.arange(360) + 1997.3794084376191
350
- self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
351
-
352
- def mel2hidden(self, mel):
353
- with torch.no_grad():
354
- n_frames = mel.shape[-1]
355
- mel = F.pad(
356
- mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
357
- )
358
- hidden = self.model(mel)
359
- return hidden[:, :n_frames]
360
-
361
- def decode(self, hidden, thred=0.03):
362
- cents_pred = self.to_local_average_cents(hidden, thred=thred)
363
- f0 = 10 * (2 ** (cents_pred / 1200))
364
- f0[f0 == 10] = 0
365
- # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
366
- return f0
367
-
368
- def infer_from_audio(self, audio, thred=0.03):
369
- audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
370
- # torch.cuda.synchronize()
371
- # t0=ttime()
372
- mel = self.mel_extractor(audio, center=True)
373
- # torch.cuda.synchronize()
374
- # t1=ttime()
375
- hidden = self.mel2hidden(mel)
376
- # torch.cuda.synchronize()
377
- # t2=ttime()
378
- hidden = hidden.squeeze(0).cpu().numpy()
379
- if self.is_half == True:
380
- hidden = hidden.astype("float32")
381
- f0 = self.decode(hidden, thred=thred)
382
- # torch.cuda.synchronize()
383
- # t3=ttime()
384
- # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
385
- return f0
386
-
387
- def to_local_average_cents(self, salience, thred=0.05):
388
- # t0 = ttime()
389
- center = np.argmax(salience, axis=1) # frame length#index
390
- salience = np.pad(salience, ((0, 0), (4, 4))) # frame length,368
391
- # t1 = ttime()
392
- center += 4
393
- todo_salience = []
394
- todo_cents_mapping = []
395
- starts = center - 4
396
- ends = center + 5
397
- for idx in range(salience.shape[0]):
398
- todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
399
- todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
400
- # t2 = ttime()
401
- todo_salience = np.array(todo_salience) # frame length,9
402
- todo_cents_mapping = np.array(todo_cents_mapping) # frame length,9
403
- product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
404
- weight_sum = np.sum(todo_salience, 1) # frame length
405
- devided = product_sum / weight_sum # frame length
406
- # t3 = ttime()
407
- maxx = np.max(salience, axis=1) # frame length
408
- devided[maxx <= thred] = 0
409
- # t4 = ttime()
410
- # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
411
- return devided
412
-
413
-
414
- # if __name__ == '__main__':
415
- # audio, sampling_rate = sf.read("Quotations~1.wav") ### edit
416
- # if len(audio.shape) > 1:
417
- # audio = librosa.to_mono(audio.transpose(1, 0))
418
- # audio_bak = audio.copy()
419
- # if sampling_rate != 16000:
420
- # audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
421
- # model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
422
- # thred = 0.03 # 0.01
423
- # device = 'cuda' if torch.cuda.is_available() else 'cpu'
424
- # rmvpe = RMVPE(model_path,is_half=False, device=device)
425
- # t0=ttime()
426
- # f0 = rmvpe.infer_from_audio(audio, thred=thred)
427
- # f0 = rmvpe.infer_from_audio(audio, thred=thred)
428
- # f0 = rmvpe.infer_from_audio(audio, thred=thred)
429
- # f0 = rmvpe.infer_from_audio(audio, thred=thred)
430
- # f0 = rmvpe.infer_from_audio(audio, thred=thred)
431
- # t1=ttime()
432
- # print(f0.shape,t1-t0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/rvc.py DELETED
@@ -1,166 +0,0 @@
1
- from multiprocessing import cpu_count
2
- from pathlib import Path
3
-
4
- import torch
5
- from fairseq import checkpoint_utils
6
- from scipy.io import wavfile
7
-
8
- from infer_pack.models import (
9
- SynthesizerTrnMs256NSFsid,
10
- SynthesizerTrnMs256NSFsid_nono,
11
- SynthesizerTrnMs768NSFsid,
12
- SynthesizerTrnMs768NSFsid_nono,
13
- )
14
- from my_utils import load_audio
15
- from vc_infer_pipeline import VC
16
-
17
- BASE_DIR = Path(__file__).resolve().parent.parent
18
-
19
-
20
- # config cpu
21
- def use_fp32_config():
22
- for config_file in [
23
- "32k.json",
24
- "40k.json",
25
- "48k.json",
26
- "48k_v2.json",
27
- "32k_v2.json",
28
- ]:
29
- with open(f"src/configs/{config_file}", "r") as f:
30
- strr = f.read().replace("true", "false")
31
- with open(f"src/configs/{config_file}", "w") as f:
32
- f.write(strr)
33
-
34
- class Config:
35
- def __init__(self, device, is_half):
36
- self.device = device
37
- self.is_half = is_half
38
- self.n_cpu = 2 # set cpu cores
39
- self.gpu_name = None
40
- self.gpu_mem = None
41
- self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
42
-
43
- def device_config(self) -> tuple:
44
- if torch.cuda.is_available():
45
- i_device = int(self.device.split(":")[-1])
46
- self.gpu_name = torch.cuda.get_device_name(i_device)
47
- if (
48
- ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
49
- or "P40" in self.gpu_name.upper()
50
- or "1060" in self.gpu_name
51
- or "1070" in self.gpu_name
52
- or "1080" in self.gpu_name
53
- ):
54
- print("16 series/10 series P40 forced single precision")
55
- self.is_half = False
56
- for config_file in ["32k.json", "40k.json", "48k.json"]:
57
- with open(BASE_DIR / "src" / "configs" / config_file, "r") as f:
58
- strr = f.read().replace("true", "false")
59
- with open(BASE_DIR / "src" / "configs" / config_file, "w") as f:
60
- f.write(strr)
61
- with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
62
- strr = f.read().replace("3.7", "3.0")
63
- with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
64
- f.write(strr)
65
- else:
66
- self.gpu_name = None
67
- self.gpu_mem = int(
68
- torch.cuda.get_device_properties(i_device).total_memory
69
- / 1024
70
- / 1024
71
- / 1024
72
- + 0.4
73
- )
74
- if self.gpu_mem <= 4:
75
- with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
76
- strr = f.read().replace("3.7", "3.0")
77
- with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
78
- f.write(strr)
79
- elif torch.backends.mps.is_available():
80
- print("No supported N-card found, use MPS for inference")
81
- self.device = "mps"
82
- else:
83
- print("No supported N-card found, use CPU for inference")
84
- self.device = "cpu"
85
- self.is_half = False
86
- use_fp32_config() # cpu config
87
-
88
- if self.n_cpu == 0:
89
- self.n_cpu = cpu_count()
90
-
91
- if self.is_half:
92
- # 6G memory config
93
- x_pad = 3
94
- x_query = 10
95
- x_center = 60
96
- x_max = 65
97
- else:
98
- # 5G memory config
99
- x_pad = 1
100
- x_query = 6
101
- x_center = 38
102
- x_max = 41
103
-
104
- if self.gpu_mem != None and self.gpu_mem <= 4:
105
- x_pad = 1
106
- x_query = 5
107
- x_center = 30
108
- x_max = 32
109
-
110
- return x_pad, x_query, x_center, x_max
111
-
112
-
113
- def load_hubert(device, is_half, model_path):
114
- models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([model_path], suffix='', )
115
- hubert = models[0]
116
- hubert = hubert.to(device)
117
-
118
- if is_half:
119
- hubert = hubert.half()
120
- else:
121
- hubert = hubert.float()
122
-
123
- hubert.eval()
124
- return hubert
125
-
126
-
127
- def get_vc(device, is_half, config, model_path):
128
- cpt = torch.load(model_path, map_location='cpu')
129
- if "config" not in cpt or "weight" not in cpt:
130
- raise ValueError(f'Incorrect format for {model_path}. Use a voice model trained using RVC v2 instead.')
131
-
132
- tgt_sr = cpt["config"][-1]
133
- cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
134
- if_f0 = cpt.get("f0", 1)
135
- version = cpt.get("version", "v1")
136
-
137
- if version == "v1":
138
- if if_f0 == 1:
139
- net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
140
- else:
141
- net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
142
- elif version == "v2":
143
- if if_f0 == 1:
144
- net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
145
- else:
146
- net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
147
-
148
- del net_g.enc_q
149
- print(net_g.load_state_dict(cpt["weight"], strict=False))
150
- net_g.eval().to(device)
151
-
152
- if is_half:
153
- net_g = net_g.half()
154
- else:
155
- net_g = net_g.float()
156
-
157
- vc = VC(tgt_sr, config)
158
- return cpt, version, net_g, tgt_sr, vc
159
-
160
-
161
- def rvc_infer(index_path, index_rate, input_path, output_path, pitch_change, f0_method, cpt, version, net_g, filter_radius, tgt_sr, rms_mix_rate, protect, crepe_hop_length, vc, hubert_model):
162
- audio = load_audio(input_path, 16000)
163
- times = [0, 0, 0]
164
- if_f0 = cpt.get('f0', 1)
165
- audio_opt = vc.pipeline(hubert_model, net_g, 0, audio, input_path, times, pitch_change, f0_method, index_path, index_rate, if_f0, filter_radius, tgt_sr, 0, rms_mix_rate, version, protect, crepe_hop_length)
166
- wavfile.write(output_path, tgt_sr, audio_opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/trainset_preprocess_pipeline_print.py DELETED
@@ -1,146 +0,0 @@
1
- import sys, os, multiprocessing
2
- from scipy import signal
3
-
4
- now_dir = os.getcwd()
5
- sys.path.append(now_dir)
6
-
7
- inp_root = sys.argv[1]
8
- sr = int(sys.argv[2])
9
- n_p = int(sys.argv[3])
10
- exp_dir = sys.argv[4]
11
- noparallel = sys.argv[5] == "True"
12
- import numpy as np, os, traceback
13
- from slicer2 import Slicer
14
- import librosa, traceback
15
- from scipy.io import wavfile
16
- import multiprocessing
17
- from my_utils import load_audio
18
- import tqdm
19
-
20
- DoFormant = False
21
- Quefrency = 1.0
22
- Timbre = 1.0
23
-
24
- mutex = multiprocessing.Lock()
25
- f = open("%s/preprocess.log" % exp_dir, "a+")
26
-
27
-
28
- def println(strr):
29
- mutex.acquire()
30
- print(strr)
31
- f.write("%s\n" % strr)
32
- f.flush()
33
- mutex.release()
34
-
35
-
36
- class PreProcess:
37
- def __init__(self, sr, exp_dir):
38
- self.slicer = Slicer(
39
- sr=sr,
40
- threshold=-42,
41
- min_length=1500,
42
- min_interval=400,
43
- hop_size=15,
44
- max_sil_kept=500,
45
- )
46
- self.sr = sr
47
- self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
48
- self.per = 3.0
49
- self.overlap = 0.3
50
- self.tail = self.per + self.overlap
51
- self.max = 0.9
52
- self.alpha = 0.75
53
- self.exp_dir = exp_dir
54
- self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
55
- self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
56
- os.makedirs(self.exp_dir, exist_ok=True)
57
- os.makedirs(self.gt_wavs_dir, exist_ok=True)
58
- os.makedirs(self.wavs16k_dir, exist_ok=True)
59
-
60
- def norm_write(self, tmp_audio, idx0, idx1):
61
- tmp_max = np.abs(tmp_audio).max()
62
- if tmp_max > 2.5:
63
- print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
64
- return
65
- tmp_audio = (tmp_audio / tmp_max * (self.max * self.alpha)) + (
66
- 1 - self.alpha
67
- ) * tmp_audio
68
- wavfile.write(
69
- "%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
70
- self.sr,
71
- tmp_audio.astype(np.float32),
72
- )
73
- tmp_audio = librosa.resample(
74
- tmp_audio, orig_sr=self.sr, target_sr=16000
75
- ) # , res_type="soxr_vhq"
76
- wavfile.write(
77
- "%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
78
- 16000,
79
- tmp_audio.astype(np.float32),
80
- )
81
-
82
- def pipeline(self, path, idx0):
83
- try:
84
- audio = load_audio(path, self.sr, DoFormant, Quefrency, Timbre)
85
- # zero phased digital filter cause pre-ringing noise...
86
- # audio = signal.filtfilt(self.bh, self.ah, audio)
87
- audio = signal.lfilter(self.bh, self.ah, audio)
88
-
89
- idx1 = 0
90
- for audio in self.slicer.slice(audio):
91
- i = 0
92
- while 1:
93
- start = int(self.sr * (self.per - self.overlap) * i)
94
- i += 1
95
- if len(audio[start:]) > self.tail * self.sr:
96
- tmp_audio = audio[start : start + int(self.per * self.sr)]
97
- self.norm_write(tmp_audio, idx0, idx1)
98
- idx1 += 1
99
- else:
100
- tmp_audio = audio[start:]
101
- idx1 += 1
102
- break
103
- self.norm_write(tmp_audio, idx0, idx1)
104
- # println("%s->Suc." % path)
105
- except:
106
- println("%s->%s" % (path, traceback.format_exc()))
107
-
108
- def pipeline_mp(self, infos, thread_n):
109
- for path, idx0 in tqdm.tqdm(
110
- infos, position=thread_n, leave=True, desc="thread:%s" % thread_n
111
- ):
112
- self.pipeline(path, idx0)
113
-
114
- def pipeline_mp_inp_dir(self, inp_root, n_p):
115
- try:
116
- infos = [
117
- ("%s/%s" % (inp_root, name), idx)
118
- for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
119
- ]
120
- if noparallel:
121
- for i in range(n_p):
122
- self.pipeline_mp(infos[i::n_p])
123
- else:
124
- ps = []
125
- for i in range(n_p):
126
- p = multiprocessing.Process(
127
- target=self.pipeline_mp, args=(infos[i::n_p], i)
128
- )
129
- ps.append(p)
130
- p.start()
131
- for i in range(n_p):
132
- ps[i].join()
133
- except:
134
- println("Fail. %s" % traceback.format_exc())
135
-
136
-
137
- def preprocess_trainset(inp_root, sr, n_p, exp_dir):
138
- pp = PreProcess(sr, exp_dir)
139
- println("start preprocess")
140
- println(sys.argv)
141
- pp.pipeline_mp_inp_dir(inp_root, n_p)
142
- println("end preprocess")
143
-
144
-
145
- if __name__ == "__main__":
146
- preprocess_trainset(inp_root, sr, n_p, exp_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/vc_infer_pipeline.py DELETED
@@ -1,653 +0,0 @@
1
- from functools import lru_cache
2
- from time import time as ttime
3
-
4
- import faiss
5
- import librosa
6
- import numpy as np
7
- import os
8
- import parselmouth
9
- import pyworld
10
- import sys
11
- import torch
12
- import torch.nn.functional as F
13
- import torchcrepe
14
- import traceback
15
- from scipy import signal
16
- from torch import Tensor
17
-
18
- BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
19
- now_dir = os.path.join(BASE_DIR, 'src')
20
- sys.path.append(now_dir)
21
-
22
- bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
23
-
24
- input_audio_path2wav = {}
25
-
26
-
27
- @lru_cache
28
- def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
29
- audio = input_audio_path2wav[input_audio_path]
30
- f0, t = pyworld.harvest(
31
- audio,
32
- fs=fs,
33
- f0_ceil=f0max,
34
- f0_floor=f0min,
35
- frame_period=frame_period,
36
- )
37
- f0 = pyworld.stonemask(audio, f0, t, fs)
38
- return f0
39
-
40
-
41
- def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
42
- # print(data1.max(),data2.max())
43
- rms1 = librosa.feature.rms(
44
- y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
45
- ) # 每半秒一个点
46
- rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
47
- rms1 = torch.from_numpy(rms1)
48
- rms1 = F.interpolate(
49
- rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
50
- ).squeeze()
51
- rms2 = torch.from_numpy(rms2)
52
- rms2 = F.interpolate(
53
- rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
54
- ).squeeze()
55
- rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
56
- data2 *= (
57
- torch.pow(rms1, torch.tensor(1 - rate))
58
- * torch.pow(rms2, torch.tensor(rate - 1))
59
- ).numpy()
60
- return data2
61
-
62
-
63
- class VC(object):
64
- def __init__(self, tgt_sr, config):
65
- self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
66
- config.x_pad,
67
- config.x_query,
68
- config.x_center,
69
- config.x_max,
70
- config.is_half,
71
- )
72
- self.sr = 16000 # hubert输入采样率
73
- self.window = 160 # 每帧点数
74
- self.t_pad = self.sr * self.x_pad # 每条前后pad时间
75
- self.t_pad_tgt = tgt_sr * self.x_pad
76
- self.t_pad2 = self.t_pad * 2
77
- self.t_query = self.sr * self.x_query # 查询切点前后查询时间
78
- self.t_center = self.sr * self.x_center # 查询切点位置
79
- self.t_max = self.sr * self.x_max # 免查询时长阈值
80
- self.device = config.device
81
-
82
- # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
83
- def get_optimal_torch_device(self, index: int = 0) -> torch.device:
84
- # Get cuda device
85
- if torch.cuda.is_available():
86
- return torch.device(
87
- f"cuda:{index % torch.cuda.device_count()}"
88
- ) # Very fast
89
- elif torch.backends.mps.is_available():
90
- return torch.device("mps")
91
- # Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
92
- # Else wise return the "cpu" as a torch device,
93
- return torch.device("cpu")
94
-
95
- # Fork Feature: Compute f0 with the crepe method
96
- def get_f0_crepe_computation(
97
- self,
98
- x,
99
- f0_min,
100
- f0_max,
101
- p_len,
102
- hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
103
- model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
104
- ):
105
- x = x.astype(
106
- np.float32
107
- ) # fixes the F.conv2D exception. We needed to convert double to float.
108
- x /= np.quantile(np.abs(x), 0.999)
109
- torch_device = self.get_optimal_torch_device()
110
- audio = torch.from_numpy(x).to(torch_device, copy=True)
111
- audio = torch.unsqueeze(audio, dim=0)
112
- if audio.ndim == 2 and audio.shape[0] > 1:
113
- audio = torch.mean(audio, dim=0, keepdim=True).detach()
114
- audio = audio.detach()
115
- print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
116
- pitch: Tensor = torchcrepe.predict(
117
- audio,
118
- self.sr,
119
- hop_length,
120
- f0_min,
121
- f0_max,
122
- model,
123
- batch_size=hop_length * 2,
124
- device=torch_device,
125
- pad=True,
126
- )
127
- p_len = p_len or x.shape[0] // hop_length
128
- # Resize the pitch for final f0
129
- source = np.array(pitch.squeeze(0).cpu().float().numpy())
130
- source[source < 0.001] = np.nan
131
- target = np.interp(
132
- np.arange(0, len(source) * p_len, len(source)) / p_len,
133
- np.arange(0, len(source)),
134
- source,
135
- )
136
- f0 = np.nan_to_num(target)
137
- return f0 # Resized f0
138
-
139
- def get_f0_official_crepe_computation(
140
- self,
141
- x,
142
- f0_min,
143
- f0_max,
144
- model="full",
145
- ):
146
- # Pick a batch size that doesn't cause memory errors on your gpu
147
- batch_size = 512
148
- # Compute pitch using first gpu
149
- audio = torch.tensor(np.copy(x))[None].float()
150
- f0, pd = torchcrepe.predict(
151
- audio,
152
- self.sr,
153
- self.window,
154
- f0_min,
155
- f0_max,
156
- model,
157
- batch_size=batch_size,
158
- device=self.device,
159
- return_periodicity=True,
160
- )
161
- pd = torchcrepe.filter.median(pd, 3)
162
- f0 = torchcrepe.filter.mean(f0, 3)
163
- f0[pd < 0.1] = 0
164
- f0 = f0[0].cpu().numpy()
165
- return f0
166
-
167
- # Fork Feature: Compute pYIN f0 method
168
- def get_f0_pyin_computation(self, x, f0_min, f0_max):
169
- y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
170
- f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
171
- f0 = f0[1:] # Get rid of extra first frame
172
- return f0
173
-
174
- # Fork Feature: Acquire median hybrid f0 estimation calculation
175
- def get_f0_hybrid_computation(
176
- self,
177
- methods_str,
178
- input_audio_path,
179
- x,
180
- f0_min,
181
- f0_max,
182
- p_len,
183
- filter_radius,
184
- crepe_hop_length,
185
- time_step,
186
- ):
187
- # Get various f0 methods from input to use in the computation stack
188
- s = methods_str
189
- s = s.split("hybrid")[1]
190
- s = s.replace("[", "").replace("]", "")
191
- methods = s.split("+")
192
- f0_computation_stack = []
193
-
194
- print("Calculating f0 pitch estimations for methods: %s" % str(methods))
195
- x = x.astype(np.float32)
196
- x /= np.quantile(np.abs(x), 0.999)
197
- # Get f0 calculations for all methods specified
198
- for method in methods:
199
- f0 = None
200
- if method == "pm":
201
- f0 = (
202
- parselmouth.Sound(x, self.sr)
203
- .to_pitch_ac(
204
- time_step=time_step / 1000,
205
- voicing_threshold=0.6,
206
- pitch_floor=f0_min,
207
- pitch_ceiling=f0_max,
208
- )
209
- .selected_array["frequency"]
210
- )
211
- pad_size = (p_len - len(f0) + 1) // 2
212
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
213
- f0 = np.pad(
214
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
215
- )
216
- elif method == "crepe":
217
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
218
- f0 = f0[1:] # Get rid of extra first frame
219
- elif method == "crepe-tiny":
220
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
221
- f0 = f0[1:] # Get rid of extra first frame
222
- elif method == "mangio-crepe":
223
- f0 = self.get_f0_crepe_computation(
224
- x, f0_min, f0_max, p_len, crepe_hop_length
225
- )
226
- elif method == "mangio-crepe-tiny":
227
- f0 = self.get_f0_crepe_computation(
228
- x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
229
- )
230
- elif method == "harvest":
231
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
232
- if filter_radius > 2:
233
- f0 = signal.medfilt(f0, 3)
234
- f0 = f0[1:] # Get rid of first frame.
235
- elif method == "dio": # Potentially buggy?
236
- f0, t = pyworld.dio(
237
- x.astype(np.double),
238
- fs=self.sr,
239
- f0_ceil=f0_max,
240
- f0_floor=f0_min,
241
- frame_period=10,
242
- )
243
- f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
244
- f0 = signal.medfilt(f0, 3)
245
- f0 = f0[1:]
246
- # elif method == "pyin": Not Working just yet
247
- # f0 = self.get_f0_pyin_computation(x, f0_min, f0_max)
248
- # Push method to the stack
249
- f0_computation_stack.append(f0)
250
-
251
- for fc in f0_computation_stack:
252
- print(len(fc))
253
-
254
- print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
255
- f0_median_hybrid = None
256
- if len(f0_computation_stack) == 1:
257
- f0_median_hybrid = f0_computation_stack[0]
258
- else:
259
- f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
260
- return f0_median_hybrid
261
-
262
- def get_f0(
263
- self,
264
- input_audio_path,
265
- x,
266
- p_len,
267
- f0_up_key,
268
- f0_method,
269
- filter_radius,
270
- crepe_hop_length,
271
- inp_f0=None,
272
- ):
273
- global input_audio_path2wav
274
- time_step = self.window / self.sr * 1000
275
- f0_min = 50
276
- f0_max = 1100
277
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
278
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
279
- if f0_method == "pm":
280
- f0 = (
281
- parselmouth.Sound(x, self.sr)
282
- .to_pitch_ac(
283
- time_step=time_step / 1000,
284
- voicing_threshold=0.6,
285
- pitch_floor=f0_min,
286
- pitch_ceiling=f0_max,
287
- )
288
- .selected_array["frequency"]
289
- )
290
- pad_size = (p_len - len(f0) + 1) // 2
291
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
292
- f0 = np.pad(
293
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
294
- )
295
- elif f0_method == "harvest":
296
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
297
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
298
- if filter_radius > 2:
299
- f0 = signal.medfilt(f0, 3)
300
- elif f0_method == "dio": # Potentially Buggy?
301
- f0, t = pyworld.dio(
302
- x.astype(np.double),
303
- fs=self.sr,
304
- f0_ceil=f0_max,
305
- f0_floor=f0_min,
306
- frame_period=10,
307
- )
308
- f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
309
- f0 = signal.medfilt(f0, 3)
310
- elif f0_method == "crepe":
311
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
312
- elif f0_method == "crepe-tiny":
313
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
314
- elif f0_method == "mangio-crepe":
315
- f0 = self.get_f0_crepe_computation(
316
- x, f0_min, f0_max, p_len, crepe_hop_length
317
- )
318
- elif f0_method == "mangio-crepe-tiny":
319
- f0 = self.get_f0_crepe_computation(
320
- x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
321
- )
322
- elif f0_method == "rmvpe":
323
- if hasattr(self, "model_rmvpe") == False:
324
- from rmvpe import RMVPE
325
-
326
- self.model_rmvpe = RMVPE(
327
- os.path.join(BASE_DIR, 'rvc_models', 'rmvpe.pt'), is_half=self.is_half, device=self.device
328
- )
329
- f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
330
-
331
- elif "hybrid" in f0_method:
332
- # Perform hybrid median pitch estimation
333
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
334
- f0 = self.get_f0_hybrid_computation(
335
- f0_method,
336
- input_audio_path,
337
- x,
338
- f0_min,
339
- f0_max,
340
- p_len,
341
- filter_radius,
342
- crepe_hop_length,
343
- time_step,
344
- )
345
-
346
- f0 *= pow(2, f0_up_key / 12)
347
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
348
- tf0 = self.sr // self.window # 每秒f0点数
349
- if inp_f0 is not None:
350
- delta_t = np.round(
351
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
352
- ).astype("int16")
353
- replace_f0 = np.interp(
354
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
355
- )
356
- shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
357
- f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
358
- :shape
359
- ]
360
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
361
- f0bak = f0.copy()
362
- f0_mel = 1127 * np.log(1 + f0 / 700)
363
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
364
- f0_mel_max - f0_mel_min
365
- ) + 1
366
- f0_mel[f0_mel <= 1] = 1
367
- f0_mel[f0_mel > 255] = 255
368
- f0_coarse = np.rint(f0_mel).astype(np.int)
369
-
370
- return f0_coarse, f0bak # 1-0
371
-
372
- def vc(
373
- self,
374
- model,
375
- net_g,
376
- sid,
377
- audio0,
378
- pitch,
379
- pitchf,
380
- times,
381
- index,
382
- big_npy,
383
- index_rate,
384
- version,
385
- protect,
386
- ): # ,file_index,file_big_npy
387
- feats = torch.from_numpy(audio0)
388
- if self.is_half:
389
- feats = feats.half()
390
- else:
391
- feats = feats.float()
392
- if feats.dim() == 2: # double channels
393
- feats = feats.mean(-1)
394
- assert feats.dim() == 1, feats.dim()
395
- feats = feats.view(1, -1)
396
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
397
-
398
- inputs = {
399
- "source": feats.to(self.device),
400
- "padding_mask": padding_mask,
401
- "output_layer": 9 if version == "v1" else 12,
402
- }
403
- t0 = ttime()
404
- with torch.no_grad():
405
- logits = model.extract_features(**inputs)
406
- feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
407
- if protect < 0.5 and pitch != None and pitchf != None:
408
- feats0 = feats.clone()
409
- if (
410
- isinstance(index, type(None)) == False
411
- and isinstance(big_npy, type(None)) == False
412
- and index_rate != 0
413
- ):
414
- npy = feats[0].cpu().numpy()
415
- if self.is_half:
416
- npy = npy.astype("float32")
417
-
418
- # _, I = index.search(npy, 1)
419
- # npy = big_npy[I.squeeze()]
420
-
421
- score, ix = index.search(npy, k=8)
422
- weight = np.square(1 / score)
423
- weight /= weight.sum(axis=1, keepdims=True)
424
- npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
425
-
426
- if self.is_half:
427
- npy = npy.astype("float16")
428
- feats = (
429
- torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
430
- + (1 - index_rate) * feats
431
- )
432
-
433
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
434
- if protect < 0.5 and pitch != None and pitchf != None:
435
- feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
436
- 0, 2, 1
437
- )
438
- t1 = ttime()
439
- p_len = audio0.shape[0] // self.window
440
- if feats.shape[1] < p_len:
441
- p_len = feats.shape[1]
442
- if pitch != None and pitchf != None:
443
- pitch = pitch[:, :p_len]
444
- pitchf = pitchf[:, :p_len]
445
-
446
- if protect < 0.5 and pitch != None and pitchf != None:
447
- pitchff = pitchf.clone()
448
- pitchff[pitchf > 0] = 1
449
- pitchff[pitchf < 1] = protect
450
- pitchff = pitchff.unsqueeze(-1)
451
- feats = feats * pitchff + feats0 * (1 - pitchff)
452
- feats = feats.to(feats0.dtype)
453
- p_len = torch.tensor([p_len], device=self.device).long()
454
- with torch.no_grad():
455
- if pitch != None and pitchf != None:
456
- audio1 = (
457
- (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
458
- .data.cpu()
459
- .float()
460
- .numpy()
461
- )
462
- else:
463
- audio1 = (
464
- (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
465
- )
466
- del feats, p_len, padding_mask
467
- if torch.cuda.is_available():
468
- torch.cuda.empty_cache()
469
- t2 = ttime()
470
- times[0] += t1 - t0
471
- times[2] += t2 - t1
472
- return audio1
473
-
474
- def pipeline(
475
- self,
476
- model,
477
- net_g,
478
- sid,
479
- audio,
480
- input_audio_path,
481
- times,
482
- f0_up_key,
483
- f0_method,
484
- file_index,
485
- # file_big_npy,
486
- index_rate,
487
- if_f0,
488
- filter_radius,
489
- tgt_sr,
490
- resample_sr,
491
- rms_mix_rate,
492
- version,
493
- protect,
494
- crepe_hop_length,
495
- f0_file=None,
496
- ):
497
- if (
498
- file_index != ""
499
- # and file_big_npy != ""
500
- # and os.path.exists(file_big_npy) == True
501
- and os.path.exists(file_index) == True
502
- and index_rate != 0
503
- ):
504
- try:
505
- index = faiss.read_index(file_index)
506
- # big_npy = np.load(file_big_npy)
507
- big_npy = index.reconstruct_n(0, index.ntotal)
508
- except:
509
- traceback.print_exc()
510
- index = big_npy = None
511
- else:
512
- index = big_npy = None
513
- audio = signal.filtfilt(bh, ah, audio)
514
- audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
515
- opt_ts = []
516
- if audio_pad.shape[0] > self.t_max:
517
- audio_sum = np.zeros_like(audio)
518
- for i in range(self.window):
519
- audio_sum += audio_pad[i : i - self.window]
520
- for t in range(self.t_center, audio.shape[0], self.t_center):
521
- opt_ts.append(
522
- t
523
- - self.t_query
524
- + np.where(
525
- np.abs(audio_sum[t - self.t_query : t + self.t_query])
526
- == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
527
- )[0][0]
528
- )
529
- s = 0
530
- audio_opt = []
531
- t = None
532
- t1 = ttime()
533
- audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
534
- p_len = audio_pad.shape[0] // self.window
535
- inp_f0 = None
536
- if hasattr(f0_file, "name") == True:
537
- try:
538
- with open(f0_file.name, "r") as f:
539
- lines = f.read().strip("\n").split("\n")
540
- inp_f0 = []
541
- for line in lines:
542
- inp_f0.append([float(i) for i in line.split(",")])
543
- inp_f0 = np.array(inp_f0, dtype="float32")
544
- except:
545
- traceback.print_exc()
546
- sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
547
- pitch, pitchf = None, None
548
- if if_f0 == 1:
549
- pitch, pitchf = self.get_f0(
550
- input_audio_path,
551
- audio_pad,
552
- p_len,
553
- f0_up_key,
554
- f0_method,
555
- filter_radius,
556
- crepe_hop_length,
557
- inp_f0,
558
- )
559
- pitch = pitch[:p_len]
560
- pitchf = pitchf[:p_len]
561
- if self.device == "mps":
562
- pitchf = pitchf.astype(np.float32)
563
- pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
564
- pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
565
- t2 = ttime()
566
- times[1] += t2 - t1
567
- for t in opt_ts:
568
- t = t // self.window * self.window
569
- if if_f0 == 1:
570
- audio_opt.append(
571
- self.vc(
572
- model,
573
- net_g,
574
- sid,
575
- audio_pad[s : t + self.t_pad2 + self.window],
576
- pitch[:, s // self.window : (t + self.t_pad2) // self.window],
577
- pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
578
- times,
579
- index,
580
- big_npy,
581
- index_rate,
582
- version,
583
- protect,
584
- )[self.t_pad_tgt : -self.t_pad_tgt]
585
- )
586
- else:
587
- audio_opt.append(
588
- self.vc(
589
- model,
590
- net_g,
591
- sid,
592
- audio_pad[s : t + self.t_pad2 + self.window],
593
- None,
594
- None,
595
- times,
596
- index,
597
- big_npy,
598
- index_rate,
599
- version,
600
- protect,
601
- )[self.t_pad_tgt : -self.t_pad_tgt]
602
- )
603
- s = t
604
- if if_f0 == 1:
605
- audio_opt.append(
606
- self.vc(
607
- model,
608
- net_g,
609
- sid,
610
- audio_pad[t:],
611
- pitch[:, t // self.window :] if t is not None else pitch,
612
- pitchf[:, t // self.window :] if t is not None else pitchf,
613
- times,
614
- index,
615
- big_npy,
616
- index_rate,
617
- version,
618
- protect,
619
- )[self.t_pad_tgt : -self.t_pad_tgt]
620
- )
621
- else:
622
- audio_opt.append(
623
- self.vc(
624
- model,
625
- net_g,
626
- sid,
627
- audio_pad[t:],
628
- None,
629
- None,
630
- times,
631
- index,
632
- big_npy,
633
- index_rate,
634
- version,
635
- protect,
636
- )[self.t_pad_tgt : -self.t_pad_tgt]
637
- )
638
- audio_opt = np.concatenate(audio_opt)
639
- if rms_mix_rate != 1:
640
- audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
641
- if resample_sr >= 16000 and tgt_sr != resample_sr:
642
- audio_opt = librosa.resample(
643
- audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
644
- )
645
- audio_max = np.abs(audio_opt).max() / 0.99
646
- max_int16 = 32768
647
- if audio_max > 1:
648
- max_int16 /= audio_max
649
- audio_opt = (audio_opt * max_int16).astype(np.int16)
650
- del pitch, pitchf, sid
651
- if torch.cuda.is_available():
652
- torch.cuda.empty_cache()
653
- return audio_opt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/webui.py DELETED
@@ -1,326 +0,0 @@
1
- import json
2
- import os
3
- import shutil
4
- import urllib.request
5
- import zipfile
6
- from argparse import ArgumentParser
7
-
8
- import gradio as gr
9
-
10
- from main import song_cover_pipeline
11
-
12
- BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
13
-
14
- mdxnet_models_dir = os.path.join(BASE_DIR, 'mdxnet_models')
15
- rvc_models_dir = os.path.join(BASE_DIR, 'rvc_models')
16
- output_dir = os.path.join(BASE_DIR, 'song_output')
17
-
18
-
19
- def get_current_models(models_dir):
20
- models_list = os.listdir(models_dir)
21
- items_to_remove = ['hubert_base.pt', 'MODELS.txt', 'public_models.json', 'rmvpe.pt']
22
- return [item for item in models_list if item not in items_to_remove]
23
-
24
-
25
- def update_models_list():
26
- models_l = get_current_models(rvc_models_dir)
27
- return gr.Dropdown.update(choices=models_l)
28
-
29
-
30
- def load_public_models():
31
- models_table = []
32
- for model in public_models['voice_models']:
33
- if not model['name'] in voice_models:
34
- model = [model['name'], model['description'], model['credit'], model['url'], ', '.join(model['tags'])]
35
- models_table.append(model)
36
-
37
- tags = list(public_models['tags'].keys())
38
- return gr.DataFrame.update(value=models_table), gr.CheckboxGroup.update(choices=tags)
39
-
40
-
41
- def extract_zip(extraction_folder, zip_name):
42
- os.makedirs(extraction_folder)
43
- with zipfile.ZipFile(zip_name, 'r') as zip_ref:
44
- zip_ref.extractall(extraction_folder)
45
- os.remove(zip_name)
46
-
47
- index_filepath, model_filepath = None, None
48
- for root, dirs, files in os.walk(extraction_folder):
49
- for name in files:
50
- if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
51
- index_filepath = os.path.join(root, name)
52
-
53
- if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
54
- model_filepath = os.path.join(root, name)
55
-
56
- if not model_filepath:
57
- raise gr.Error(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
58
-
59
- # move model and index file to extraction folder
60
- os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
61
- if index_filepath:
62
- os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
63
-
64
- # remove any unnecessary nested folders
65
- for filepath in os.listdir(extraction_folder):
66
- if os.path.isdir(os.path.join(extraction_folder, filepath)):
67
- shutil.rmtree(os.path.join(extraction_folder, filepath))
68
-
69
-
70
- def download_online_model(url, dir_name, progress=gr.Progress()):
71
- try:
72
- progress(0, desc=f'[~] Downloading voice model with name {dir_name}...')
73
- zip_name = url.split('/')[-1]
74
- extraction_folder = os.path.join(rvc_models_dir, dir_name)
75
- if os.path.exists(extraction_folder):
76
- raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
77
-
78
- if 'pixeldrain.com' in url:
79
- url = f'https://pixeldrain.com/api/file/{zip_name}'
80
-
81
- urllib.request.urlretrieve(url, zip_name)
82
-
83
- progress(0.5, desc='[~] Extracting zip...')
84
- extract_zip(extraction_folder, zip_name)
85
- return f'[+] {dir_name} Model successfully downloaded!'
86
-
87
- except Exception as e:
88
- raise gr.Error(str(e))
89
-
90
-
91
- def upload_local_model(zip_path, dir_name, progress=gr.Progress()):
92
- try:
93
- extraction_folder = os.path.join(rvc_models_dir, dir_name)
94
- if os.path.exists(extraction_folder):
95
- raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
96
-
97
- zip_name = zip_path.name
98
- progress(0.5, desc='[~] Extracting zip...')
99
- extract_zip(extraction_folder, zip_name)
100
- return f'[+] {dir_name} Model successfully uploaded!'
101
-
102
- except Exception as e:
103
- raise gr.Error(str(e))
104
-
105
-
106
- def filter_models(tags, query):
107
- models_table = []
108
-
109
- # no filter
110
- if len(tags) == 0 and len(query) == 0:
111
- for model in public_models['voice_models']:
112
- models_table.append([model['name'], model['description'], model['credit'], model['url'], model['tags']])
113
-
114
- # filter based on tags and query
115
- elif len(tags) > 0 and len(query) > 0:
116
- for model in public_models['voice_models']:
117
- if all(tag in model['tags'] for tag in tags):
118
- model_attributes = f"{model['name']} {model['description']} {model['credit']} {' '.join(model['tags'])}".lower()
119
- if query.lower() in model_attributes:
120
- models_table.append([model['name'], model['description'], model['credit'], model['url'], model['tags']])
121
-
122
- # filter based on only tags
123
- elif len(tags) > 0:
124
- for model in public_models['voice_models']:
125
- if all(tag in model['tags'] for tag in tags):
126
- models_table.append([model['name'], model['description'], model['credit'], model['url'], model['tags']])
127
-
128
- # filter based on only query
129
- else:
130
- for model in public_models['voice_models']:
131
- model_attributes = f"{model['name']} {model['description']} {model['credit']} {' '.join(model['tags'])}".lower()
132
- if query.lower() in model_attributes:
133
- models_table.append([model['name'], model['description'], model['credit'], model['url'], model['tags']])
134
-
135
- return gr.DataFrame.update(value=models_table)
136
-
137
-
138
- def pub_dl_autofill(pub_models, event: gr.SelectData):
139
- return gr.Text.update(value=pub_models.loc[event.index[0], 'URL']), gr.Text.update(value=pub_models.loc[event.index[0], 'Model Name'])
140
-
141
-
142
- def swap_visibility():
143
- return gr.update(visible=True), gr.update(visible=False), gr.update(value=''), gr.update(value=None)
144
-
145
-
146
- def process_file_upload(file):
147
- return file.name, gr.update(value=file.name)
148
-
149
-
150
- def show_hop_slider(pitch_detection_algo):
151
- if pitch_detection_algo == 'mangio-crepe':
152
- return gr.update(visible=True)
153
- else:
154
- return gr.update(visible=False)
155
-
156
-
157
- if __name__ == '__main__':
158
- parser = ArgumentParser(description='Generate a AI cover song in the song_output/id directory.', add_help=True)
159
- parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
160
- parser.add_argument("--listen", action="store_true", default=False, help="Make the WebUI reachable from your local network.")
161
- parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
162
- parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
163
- args = parser.parse_args()
164
-
165
- voice_models = get_current_models(rvc_models_dir)
166
- with open(os.path.join(rvc_models_dir, 'public_models.json'), encoding='utf8') as infile:
167
- public_models = json.load(infile)
168
-
169
- with gr.Blocks(title='AICoverGenWebUI') as app:
170
-
171
- gr.Label('AICoverGen WebUI created with ❤️', show_label=False)
172
-
173
- gr.Markdown("AI-Cover-Gen-No-UI [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ardha27/AICoverGen-NoUI-Colab/blob/main/CoverGen_No_UI.ipynb)")
174
- gr.Markdown("Duplicate the space for use in private")
175
- gr.Markdown("[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/r3gm/AICoverGen?duplicate=true)\n\n")
176
-
177
- # main tab
178
- with gr.Tab("Generate"):
179
-
180
- with gr.Accordion('Main Options'):
181
- with gr.Row():
182
- with gr.Column():
183
- rvc_model = gr.Dropdown(voice_models, label='Voice Models', info='Models folder "AICoverGen --> rvc_models". After new models are added into this folder, click the refresh button')
184
- ref_btn = gr.Button('Refresh Models 🔁', variant='primary')
185
-
186
- with gr.Column() as yt_link_col:
187
- song_input = gr.Text(label='Song input', info='Link to a song on YouTube or full path to a local file. For file upload, click the button below. Example: https://www.youtube.com/watch?v=M-mtdN6R3bQ')
188
- show_file_upload_button = gr.Button('Upload file instead')
189
-
190
- with gr.Column(visible=False) as file_upload_col:
191
- local_file = gr.File(label='Audio file')
192
- song_input_file = gr.UploadButton('Upload 📂', file_types=['audio'], variant='primary')
193
- show_yt_link_button = gr.Button('Paste YouTube link/Path to local file instead')
194
- song_input_file.upload(process_file_upload, inputs=[song_input_file], outputs=[local_file, song_input])
195
-
196
- with gr.Column():
197
- pitch = gr.Slider(-3, 3, value=0, step=1, label='Pitch Change (Vocals ONLY)', info='Generally, use 1 for male to female conversions and -1 for vice-versa. (Octaves)')
198
- pitch_all = gr.Slider(-12, 12, value=0, step=1, label='Overall Pitch Change', info='Changes pitch/key of vocals and instrumentals together. Altering this slightly reduces sound quality. (Semitones)')
199
- show_file_upload_button.click(swap_visibility, outputs=[file_upload_col, yt_link_col, song_input, local_file])
200
- show_yt_link_button.click(swap_visibility, outputs=[yt_link_col, file_upload_col, song_input, local_file])
201
-
202
- with gr.Accordion('Voice conversion options', open=False):
203
- with gr.Row():
204
- index_rate = gr.Slider(0, 1, value=0.5, label='Index Rate', info="Controls how much of the AI voice's accent to keep in the vocals")
205
- filter_radius = gr.Slider(0, 7, value=3, step=1, label='Filter radius', info='If >=3: apply median filtering median filtering to the harvested pitch results. Can reduce breathiness')
206
- rms_mix_rate = gr.Slider(0, 1, value=0.25, label='RMS mix rate', info="Control how much to mimic the original vocal's loudness (0) or a fixed loudness (1)")
207
- protect = gr.Slider(0, 0.5, value=0.33, label='Protect rate', info='Protect voiceless consonants and breath sounds. Set to 0.5 to disable.')
208
- with gr.Column():
209
- f0_method = gr.Dropdown(['rmvpe', 'mangio-crepe'], value='rmvpe', label='Pitch detection algorithm', info='Best option is rmvpe (clarity in vocals), then mangio-crepe (smoother vocals)')
210
- crepe_hop_length = gr.Slider(32, 320, value=128, step=1, visible=False, label='Crepe hop length', info='Lower values leads to longer conversions and higher risk of voice cracks, but better pitch accuracy.')
211
- f0_method.change(show_hop_slider, inputs=f0_method, outputs=crepe_hop_length)
212
- keep_files = gr.Checkbox(label='Keep intermediate files', info='Keep all audio files generated in the song_output/id directory, e.g. Isolated Vocals/Instrumentals. Leave unchecked to save space')
213
-
214
- with gr.Accordion('Audio mixing options', open=False):
215
- gr.Markdown('### Volume Change (decibels)')
216
- with gr.Row():
217
- main_gain = gr.Slider(-20, 20, value=0, step=1, label='Main Vocals')
218
- backup_gain = gr.Slider(-20, 20, value=0, step=1, label='Backup Vocals')
219
- inst_gain = gr.Slider(-20, 20, value=0, step=1, label='Music')
220
-
221
- gr.Markdown('### Reverb Control on AI Vocals')
222
- with gr.Row():
223
- reverb_rm_size = gr.Slider(0, 1, value=0.15, label='Room size', info='The larger the room, the longer the reverb time')
224
- reverb_wet = gr.Slider(0, 1, value=0.2, label='Wetness level', info='Level of AI vocals with reverb')
225
- reverb_dry = gr.Slider(0, 1, value=0.8, label='Dryness level', info='Level of AI vocals without reverb')
226
- reverb_damping = gr.Slider(0, 1, value=0.7, label='Damping level', info='Absorption of high frequencies in the reverb')
227
-
228
- gr.Markdown('### Audio Output Format')
229
- output_format = gr.Dropdown(['mp3', 'wav'], value='mp3', label='Output file type', info='mp3: small file size, decent quality. wav: Large file size, best quality')
230
-
231
- with gr.Row():
232
- clear_btn = gr.ClearButton(value='Clear', components=[song_input, rvc_model, keep_files, local_file])
233
- generate_btn = gr.Button("Generate", variant='primary')
234
- ai_cover = gr.Audio(label='AI Cover', show_share_button=False)
235
-
236
- ref_btn.click(update_models_list, None, outputs=rvc_model)
237
- is_webui = gr.Number(value=1, visible=False)
238
- generate_btn.click(song_cover_pipeline,
239
- inputs=[song_input, rvc_model, pitch, keep_files, is_webui, main_gain, backup_gain,
240
- inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
241
- protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
242
- output_format],
243
- outputs=[ai_cover])
244
- clear_btn.click(lambda: [0, 0, 0, 0, 0.5, 3, 0.25, 0.33, 'rmvpe', 128, 0, 0.15, 0.2, 0.8, 0.7, 'mp3', None],
245
- outputs=[pitch, main_gain, backup_gain, inst_gain, index_rate, filter_radius, rms_mix_rate,
246
- protect, f0_method, crepe_hop_length, pitch_all, reverb_rm_size, reverb_wet,
247
- reverb_dry, reverb_damping, output_format, ai_cover])
248
-
249
- # Download tab
250
- with gr.Tab('Download model'):
251
-
252
- with gr.Tab('From HuggingFace/Pixeldrain URL'):
253
- with gr.Row():
254
- model_zip_link = gr.Text(label='Download link to model', info='Should be a zip file containing a .pth model file and an optional .index file.')
255
- model_name = gr.Text(label='Name your model', info='Give your new model a unique name from your other voice models.')
256
-
257
- with gr.Row():
258
- download_btn = gr.Button('Download 🌐', variant='primary', scale=19)
259
- dl_output_message = gr.Text(label='Output Message', interactive=False, scale=20)
260
-
261
- download_btn.click(download_online_model, inputs=[model_zip_link, model_name], outputs=dl_output_message)
262
-
263
- gr.Markdown('## Input Examples')
264
- gr.Examples(
265
- [
266
- ['https://huggingface.co/phant0m4r/LiSA/resolve/main/LiSA.zip', 'Lisa'],
267
- ['https://pixeldrain.com/u/3tJmABXA', 'Gura'],
268
- ['https://huggingface.co/Kit-Lemonfoot/kitlemonfoot_rvc_models/resolve/main/AZKi%20(Hybrid).zip', 'Azki']
269
- ],
270
- [model_zip_link, model_name],
271
- [],
272
- download_online_model,
273
- )
274
-
275
- with gr.Tab('From Public Index'):
276
-
277
- gr.Markdown('## How to use')
278
- gr.Markdown('- Click Initialize public models table')
279
- gr.Markdown('- Filter models using tags or search bar')
280
- gr.Markdown('- Select a row to autofill the download link and model name')
281
- gr.Markdown('- Click Download')
282
-
283
- with gr.Row():
284
- pub_zip_link = gr.Text(label='Download link to model')
285
- pub_model_name = gr.Text(label='Model name')
286
-
287
- with gr.Row():
288
- download_pub_btn = gr.Button('Download 🌐', variant='primary', scale=19)
289
- pub_dl_output_message = gr.Text(label='Output Message', interactive=False, scale=20)
290
-
291
- filter_tags = gr.CheckboxGroup(value=[], label='Show voice models with tags', choices=[])
292
- search_query = gr.Text(label='Search')
293
- load_public_models_button = gr.Button(value='Initialize public models table', variant='primary')
294
-
295
- public_models_table = gr.DataFrame(value=[], headers=['Model Name', 'Description', 'Credit', 'URL', 'Tags'], label='Available Public Models', interactive=False)
296
- public_models_table.select(pub_dl_autofill, inputs=[public_models_table], outputs=[pub_zip_link, pub_model_name])
297
- load_public_models_button.click(load_public_models, outputs=[public_models_table, filter_tags])
298
- search_query.change(filter_models, inputs=[filter_tags, search_query], outputs=public_models_table)
299
- filter_tags.change(filter_models, inputs=[filter_tags, search_query], outputs=public_models_table)
300
- download_pub_btn.click(download_online_model, inputs=[pub_zip_link, pub_model_name], outputs=pub_dl_output_message)
301
-
302
- # Upload tab
303
- with gr.Tab('Upload model'):
304
- gr.Markdown('## Upload locally trained RVC v2 model and index file')
305
- gr.Markdown('- Find model file (weights folder) and optional index file (logs/[name] folder)')
306
- gr.Markdown('- Compress files into zip file')
307
- gr.Markdown('- Upload zip file and give unique name for voice')
308
- gr.Markdown('- Click Upload model')
309
-
310
- with gr.Row():
311
- with gr.Column():
312
- zip_file = gr.File(label='Zip file')
313
-
314
- local_model_name = gr.Text(label='Model name')
315
-
316
- with gr.Row():
317
- model_upload_button = gr.Button('Upload model', variant='primary', scale=19)
318
- local_upload_output_message = gr.Text(label='Output Message', interactive=False, scale=20)
319
- model_upload_button.click(upload_local_model, inputs=[zip_file, local_model_name], outputs=local_upload_output_message)
320
-
321
- app.launch(
322
- share=args.share_enabled,
323
- enable_queue=True,
324
- server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
325
- server_port=args.listen_port,
326
- )