# Depth Anything V2 for Metric Depth Estimation ![teaser](./assets/compare_zoedepth.png) We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively. ## Usage ### Inference Please first download our pre-trained metric depth models and put them under the `checkpoints` directory: - [Indoor model from Hypersim](https://huggingface.co./depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true) - [Outdoor model from Virtual KITTI 2](https://huggingface.co./depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true) ```bash # indoor scenes python run.py \ --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ --max-depth 20 --img-path --outdir [--input-size ] [--save-numpy] # outdoor scenes python run.py \ --encoder vitl --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \ --max-depth 80 --img-path --outdir [--input-size ] [--save-numpy] ``` You can also project 2D images to point clouds: ```bash python depth_to_pointcloud.py \ --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ --max-depth 20 --img-path --outdir ``` ### Reproduce training Please first prepare the [Hypersim](https://github.com/apple/ml-hypersim) and [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/) datasets. Then: ```bash bash dist_train.sh ``` ## Citation If you find this project useful, please consider citing: ```bibtex @article{depth_anything_v2, title={Depth Anything V2}, author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, journal={arXiv:2406.09414}, year={2024} } ```